A016838 a(n) = (4n + 3)^2.
9, 49, 121, 225, 361, 529, 729, 961, 1225, 1521, 1849, 2209, 2601, 3025, 3481, 3969, 4489, 5041, 5625, 6241, 6889, 7569, 8281, 9025, 9801, 10609, 11449, 12321, 13225, 14161, 15129, 16129, 17161, 18225
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..860
- Milan Janjic, Two Enumerative Functions
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(4*n+3)^2: n in [0..50]]; // Vincenzo Librandi, Apr 26 2011
-
Maple
A016838:=n->(4*n + 3)^2; seq(A016838(n), n=0..50); # Wesley Ivan Hurt, Feb 24 2014
-
Mathematica
Table[(4*n + 3)^2, {n, 0, 40}] (* Vaclav Kotesovec, Nov 14 2017 *)
-
PARI
a(n)=(4*n+3)^2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
Denominators of first differences Zeta[2,(4n-1)/4]-Zeta[2,(4(n+1)-1)/4]. - Artur Jasinski, Mar 03 2010
From George F. Johnson, Oct 03 2012: (Start)
G.f.: (9+22*x+x^2)/(1-x)^3.
a(n+1) = a(n) + 16 + 8*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 32 = 3*a(n) - 3*a(n-1) + a(n-2).
a(n-1)*a(n+1) = (a(n)-16)^2; a(n+1) - a(n-1) = 16*sqrt(a(n)).
(End)
Sum_{n>=0} 1/a(n) = Pi^2/16 - G/2, where G is the Catalan constant (A006752). - Amiram Eldar, Jun 28 2020
Product_{n>=0} (1 - 1/a(n)) = Gamma(3/4)^2/sqrt(Pi) = A068465^2 * A087197. - Amiram Eldar, Feb 01 2021
Comments