A017233 a(n) = 9*n + 6.
6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, 465, 474, 483
Offset: 0
References
- W. W. R. Ball, A Short Account of the History of Mathematics, Sterling Publishing Company, Inc., 2001 (Facsimile Edition) [orig. pub. 1912], pages 110-111.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Tanya Khovanova, Recursive Sequences.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[9*n+6: n in [0..60]]; // Vincenzo Librandi, Jul 24 2011
-
Mathematica
Range[6, 1000, 9] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *) LinearRecurrence[{2,-1},{6,15},60] (* Harvey P. Dale, Feb 01 2014 *)
-
PARI
a(n)=9*n+6 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: 3*(2+x)/(x-1)^2. - R. J. Mathar, Mar 20 2018
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/27 - log(2)/9. - Amiram Eldar, Dec 12 2021
E.g.f.: 3*exp(x)*(2 + 3*x). - Stefano Spezia, Dec 07 2024
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 2*a(n-1) - a(n-2). (End)
Comments