A273372 Squares ending in digit 1.
1, 81, 121, 361, 441, 841, 961, 1521, 1681, 2401, 2601, 3481, 3721, 4761, 5041, 6241, 6561, 7921, 8281, 9801, 10201, 11881, 12321, 14161, 14641, 16641, 17161, 19321, 19881, 22201, 22801, 25281, 25921, 28561, 29241, 32041, 32761, 35721, 36481, 39601, 40401
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
/* By definition: */ [n^2: n in [0..200] | Modexp(n,2,10) eq 1];
-
Magma
[5*(10*n+(-1)^n-5)*(2*n+(-1)^n-1)/4+1: n in [1..50]];
-
Mathematica
Table[5 (10 n + (-1)^n - 5) (2 n + (-1)^n - 1)/4 + 1, {n, 1, 50}]
-
Python
A273372_list = [(10*n+m)**2 for n in range(10**3) for m in (1,9)] # Chai Wah Wu, May 24 2016
-
Ruby
p (1..(n + 1) / 2).inject([]){|s, i| s + [(10 * i - 9) ** 2, (10 * i - 1) ** 2]}[0..n - 1] # Seiichi Manyama, May 24 2016
Formula
G.f.: x*(1 + 80*x + 38*x^2 + 80*x^3 + x^4) / ((1 + x)^2*(1 - x)^3).
a(n) = 10*A132356(n-1) + 1 = 5*(10*n+(-1)^n-5)*(2*n+(-1)^n-1)/4+1.
a(n) = (5*n - 5/2 + (3/2)*(-1)^n)^2 = 25*n^2 - 25*n + 17/2 + 15*n*(-1)^n - (15/2)*(-1)^n. - David A. Corneth, May 21 2016
a(n) = A090771(n)^2. - Michel Marcus, May 25 2016
Sum_{n>=1} 1/a(n) = Pi^2*(3+sqrt(5))/50. - Amiram Eldar, Feb 16 2023
Extensions
Edited by Bruno Berselli, May 24 2016
Comments