A017293 a(n) = 10*n + 2.
2, 12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122, 132, 142, 152, 162, 172, 182, 192, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 302, 312, 322, 332, 342, 352, 362, 372, 382, 392, 402, 412, 422, 432, 442, 452, 462, 472, 482, 492, 502, 512, 522, 532
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Tanya Khovanova, Recursive Sequences.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Magma
[10*n+2: n in [0..50]]; // Vincenzo Librandi, May 04 2011
-
Maple
A017293:=n->10*n+2; seq(A017293(n), n=0..100); # Wesley Ivan Hurt, May 03 2014
-
Mathematica
Range[2, 1000, 10] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *) CoefficientList[Series[(2 + 8 x) / (1 - x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Jul 23 2016 *) 10 Range[0,60]+2 (* or *) LinearRecurrence[{2,-1},{2,12},60] (* Harvey P. Dale, Jul 04 2019 *)
Formula
G.f.: 2*(1 + 4*x)/(1-x)^2. - Vincenzo Librandi, Jul 23 2016
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 2*exp(x)*(1 + 5*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = A016873(2*n). (End)
Comments