cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A016861 a(n) = 5*n + 1.

Original entry on oeis.org

1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 206, 211, 216, 221, 226, 231, 236, 241, 246, 251, 256, 261, 266, 271, 276, 281
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Numbers ending in 1 or 6.
Apart from initial terms, same as 5n-14.
Complement of A047203; A027445(a(n)) mod 10 = 4. - Reinhard Zumkeller, Oct 23 2006
Campbell reference shows: "A graph on n vertices with at least 4n-9 edges is intrinsically linked. A graph on n vertices with at least 5n-14 edges is intrinsically knotted." - Jonathan Vos Post, Jan 18 2007
Central terms of the triangle in A153125: a(n) = A153125(2*n+1, n+1). - Reinhard Zumkeller, Dec 20 2008
For n > 2, also the number of (not necessarily maximal) cliques in the n-Moebius ladder graph. - Eric W. Weisstein, Nov 29 2017
For n > 3, also the number of (not necessarily maximal) cliques in the n-prism graph. - Eric W. Weisstein, Nov 29 2017
For n >= 1, a(n) is the size of any hexagonal chain graph with n cells. - Christian Barrientos, Sarah Minion, Mar 07 2018
For n >= 1, a(n) is the number of possible outcomes of the summation when using n dice. - Bram Kole, Dec 24 2018
Numbers congruent to 1 (mod 5). - Muniru A Asiru, Jan 01 2019
Numbers k such that the k-th Fibonacci number, A000045(k), and the k-th Lucas number, A000032(k), end with the same decimal digit. - Amiram Eldar, Apr 15 2023

Crossrefs

Cf. A093562 ((5, 1) Pascal, column m=1).
Cf. A000566 (partial sums).

Programs

Formula

G.f.: (1+4*x)/(1-x)^2.
Row sums of triangle A131843. - Gary W. Adamson, Jul 21 2007
a(n) = 2*a(n-1) - a(n-2) with a(0)=1, a(1)=6. - Vincenzo Librandi, Aug 01 2010
a(n) = A017293(n)/2 = A008587(n)+1. - Wesley Ivan Hurt, May 03 2014
E.g.f.: exp(x)*(1 + 5*x). - Stefano Spezia, Mar 23 2021
Sum_{n>=0} (-1)^n/a(n) = sqrt(2+2/sqrt(5))*Pi/10 + log(phi)/sqrt(5) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

Extensions

More terms from Reinhard Zumkeller, Oct 23 2006

A017281 a(n) = 10*n + 1.

Original entry on oeis.org

1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231, 241, 251, 261, 271, 281, 291, 301, 311, 321, 331, 341, 351, 361, 371, 381, 391, 401, 411, 421, 431, 441, 451, 461, 471, 481, 491, 501, 511, 521, 531
Offset: 0

Views

Author

Keywords

Comments

Equals [1, 2, 3, ...] convolved with [1, 9, 0, 0, 0, ...]. - Gary W. Adamson, May 30 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=10, (i>1), A[i,i-1] = -1, and A[i,j]=0 otherwise. Then, for n>=2, a(n-1) = -coeff(charpoly(A,x),x^(n-1)). - Milan Janjic, Feb 21 2010
Positive integers with last decimal digit = 1. - Wesley Ivan Hurt, Jun 17 2015
Also the number of (not necessarily maximal) cliques in the 2n-crossed prism graph. - Eric W. Weisstein, Nov 29 2017
From Martin Renner, May 28 2024: (Start)
Also number of squares in a grid cross with equally long arms and a width of two points (cf. A017113), e.g. for n = 2 there are nine squares of size 1 unit of area, four of size 2, two of size 5, four of size 8 and two of size 13, thus a total of 21 squares.
· · · · · · · · * ·
· · · · * · * · · ·
* * · · · · · · * · · · · · · · * · · · · · · · · · · · · *
* * · · · · · * · * · · · * · · · · * · · · * · * · · · · ·
· · * · · * · · · ·
· · · · · · * · · *
The possible areas of the squares are given by ceiling(k^2/2) for 1 <= k <= 2*n+1, cf. A000982. In general, there are 4*n + 1 squares with one unit area to be found in the cross, cf. A016813, for n > 0 always four squares of even area and two squares of odd area > 1. (End)

Crossrefs

Cf. A093645 (column 1).
Subsequence of A034709, together with A017293, A017329, A139222, A139245, A139249, A139264, A139279 and A139280.
Cf. A030430 (primes).
Cf. A272914, first comment. [Bruno Berselli, May 26 2016]

Programs

Formula

G.f.: (1+9*x)/(1-x)^2.
a(n) = 20*n - a(n-1) - 8, with a(0)=1. - Vincenzo Librandi, Nov 20 2010
a(n) = 2*a(n-1) - a(n-2), for n > 2. - Wesley Ivan Hurt, Jun 17 2015
E.g.f.: (1 + 10*x)*exp(x). - G. C. Greubel, Sep 18 2019

A017329 a(n) = 10*n + 5.

Original entry on oeis.org

5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165, 175, 185, 195, 205, 215, 225, 235, 245, 255, 265, 275, 285, 295, 305, 315, 325, 335, 345, 355, 365, 375, 385, 395, 405, 415, 425, 435, 445, 455, 465, 475, 485, 495, 505, 515, 525, 535
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of tanh(1/5). - Benoit Cloitre, Dec 17 2002
n such that 5 divides the numerator of B(2n) where B(2n) = the 2n-th Bernoulli number. - Benoit Cloitre, Jan 01 2004
5 times odd numbers. - Omar E. Pol, May 02 2008
5th transversal numbers (or 5-transversal numbers): Numbers of the 5th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 5th column in the square array A057145. - Omar E. Pol, May 02 2008
Successive sums: 5, 20, 45, 80, 125, ... (see A033429). - Philippe Deléham, Dec 08 2011
3^a(n) + 1 is divisible by 61. - Vincenzo Librandi, Feb 05 2013
If the initial 5 is changed to 1, giving 1,15,25,35,45,..., these are values of m such that A323288(m)/m reaches a new record high value. - N. J. A. Sloane, Jan 23 2019

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

a(n) = 5*A005408(n). - Omar E. Pol, Oct 19 2008
a(n) = 20*n - a(n-1) (with a(0)=5). - Vincenzo Librandi, Nov 19 2010
G.f.: 5*(x+1)/(x-1)^2. - Colin Barker, Nov 14 2012
a(n) = A057145(n+2,5). - R. J. Mathar, Jul 28 2016
E.g.f.: 5*exp(x)*(1 + 2*x). - Stefano Spezia, Feb 14 2020
Sum_{n>=0} (-1)^n/a(n) = Pi/20. - Amiram Eldar, Dec 12 2021
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(5-sqrt(5))/2 = sqrt(2)*sin(Pi/5) = A182007/A002193.
Product_{n>=0} (1 + (-1)^n/a(n)) = phi/sqrt(2) (A094884). (End)
a(n) = (n+3)^2 - (n-2)^2. - Alexander Yutkin, Mar 16 2025
From Elmo R. Oliveira, Apr 12 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
a(n) = A008587(2*n+1). (End)

A034709 Numbers divisible by their last digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 21, 22, 24, 25, 31, 32, 33, 35, 36, 41, 42, 44, 45, 48, 51, 52, 55, 61, 62, 63, 64, 65, 66, 71, 72, 75, 77, 81, 82, 84, 85, 88, 91, 92, 93, 95, 96, 99, 101, 102, 104, 105, 111, 112, 115, 121, 122, 123, 124, 125, 126, 128, 131, 132
Offset: 1

Views

Author

Keywords

Comments

The differences between consecutive terms repeat with period 1177 and the corresponding terms differ by 2520 = LCM(1,2,...,9). In other words, a(k*1177+i) = 2520*k + a(i). - Giovanni Resta, Aug 20 2015
The asymptotic density of this sequence is 1177/2520 = 0.467063... (see A341431 and A341432 for the values in other base representations). - Amiram Eldar, Nov 24 2022

Crossrefs

Programs

  • Haskell
    import Data.Char (digitToInt)
    a034709 n = a034709_list !! (n-1)
    a034709_list =
       filter (\i -> i `mod` 10 > 0 && i `mod` (i `mod` 10) == 0) [1..]
    -- Reinhard Zumkeller, Jun 19 2011
    
  • Maple
    N:= 1000: # to get all terms <= N
    sort([seq(seq(ilcm(10,d)*x+d, x=0..floor((N-d)/ilcm(10,d))), d=1..9)]); # Robert Israel, Aug 20 2015
  • Mathematica
    dldQ[n_]:=Module[{idn=IntegerDigits[n],last1},last1=Last[idn]; last1!= 0&&Divisible[n,last1]]; Select[Range[150],dldQ]  (* Harvey P. Dale, Apr 25 2011 *)
    Select[Range[150],Mod[#,10]!=0&&Divisible[#,Mod[#,10]]&] (* Harvey P. Dale, Aug 07 2022 *)
  • PARI
    for(n=1,200,if(n%10,if(!(n%digits(n)[#Str(n)]),print1(n,", ")))) \\ Derek Orr, Sep 19 2014
  • Python
    A034709_list = [n for n in range(1, 1000) if n % 10 and not n % (n % 10)]
    # Chai Wah Wu, Sep 18 2014
    

A017305 a(n) = 10*n + 3.

Original entry on oeis.org

3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123, 133, 143, 153, 163, 173, 183, 193, 203, 213, 223, 233, 243, 253, 263, 273, 283, 293, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 403, 413, 423, 433, 443, 453, 463, 473, 483, 493, 503, 513, 523, 533
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(38).

Crossrefs

Programs

Formula

a(n) = A017198(n) - A156677(n+2). - Reinhard Zumkeller, Jul 13 2010
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, May 28 2011
G.f.: (3+7*x)/(x-1)^2. - R. J. Mathar, Apr 11 2016
E.g.f.: exp(x)*(3 + 10*x). - Stefano Spezia, Aug 22 2023
a(n) = A016885(2*n). - Elmo R. Oliveira, Apr 10 2025

A017569 a(n) = 12*n + 4.

Original entry on oeis.org

4, 16, 28, 40, 52, 64, 76, 88, 100, 112, 124, 136, 148, 160, 172, 184, 196, 208, 220, 232, 244, 256, 268, 280, 292, 304, 316, 328, 340, 352, 364, 376, 388, 400, 412, 424, 436, 448, 460, 472, 484, 496, 508, 520, 532, 544, 556, 568, 580, 592, 604, 616, 628
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(46).
Number of 6 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (11;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1A008574; m=3: A016933; m=4: A022144; m=5: A017293. - Sergey Kitaev, Nov 13 2004
Except for 4, exponents e such that x^e - x^2 + 1 is reducible.
If Y and Z are 2-blocks of a (3n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
Terms are perfect squares iff n is a generalized octagonal number (A001082), then n = k*(3*k-2) and a(n) = (2*(3*k-1))^2. - Bernard Schott, Feb 26 2023

Crossrefs

Programs

Formula

A089911(a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(2)/12. - Amiram Eldar, Dec 12 2021
From Stefano Spezia, Feb 25 2023: (Start)
O.g.f.: 4*(1 + 2*x)/(1 - x)^2.
E.g.f.: 4*exp(x)*(1 + 3*x). (End)
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
a(n) = 2*A016933(n) = 4*A016777(n) = A016777(4*n+1). (End)

A139279 a(n) = 40*n - 32.

Original entry on oeis.org

8, 48, 88, 128, 168, 208, 248, 288, 328, 368, 408, 448, 488, 528, 568, 608, 648, 688, 728, 768, 808, 848, 888, 928, 968, 1008, 1048, 1088, 1128, 1168, 1208, 1248, 1288, 1328, 1368, 1408, 1448, 1488, 1528, 1568, 1608, 1648, 1688, 1728, 1768, 1808, 1848
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 8 with unit digit equal to 8.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139249, A139264 and A139280.

Programs

Formula

a(n) = a(n-1) + 40.
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: (72*x - 32)/(1-x)^2.
E.g.f.: (40*x - 32)*exp(x). (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008
New definition from Paolo P. Lava, Sep 06 2010

A139280 a(n) = 90*n - 81.

Original entry on oeis.org

9, 99, 189, 279, 369, 459, 549, 639, 729, 819, 909, 999, 1089, 1179, 1269, 1359, 1449, 1539, 1629, 1719, 1809, 1899, 1989, 2079, 2169, 2259, 2349, 2439, 2529, 2619, 2709, 2799, 2889, 2979, 3069, 3159, 3249, 3339, 3429, 3519, 3609, 3699, 3789, 3879, 3969
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 9 with final digit 9.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139249, A139264 and A139279.

Programs

Formula

a(n) = a(n-1) + 90.
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: 9*(19*x-9)/(x-1)^2.
E.g.f.: 81 + 9*(10*x - 9)*exp(x). (End) [G.f. corrected by Georg Fischer, May 12 2019]; [E.g.f. corrected by Elmo R. Oliveira, Apr 04 2025]
From Elmo R. Oliveira, Apr 04 2025: (Start)
a(n) = 9*A017281(n-1) = 3*A139222(n).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A139245 a(n) = 20*n - 16.

Original entry on oeis.org

4, 24, 44, 64, 84, 104, 124, 144, 164, 184, 204, 224, 244, 264, 284, 304, 324, 344, 364, 384, 404, 424, 444, 464, 484, 504, 524, 544, 564, 584, 604, 624, 644, 664, 684, 704, 724, 744, 764, 784, 804, 824, 844, 864, 884, 904, 924, 944, 964, 984, 1004, 1024, 1044
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 4 with the unit digit equal to 4.
Positive integers that are the product of two integers ending with 2 (see A017293). - Stefano Spezia, Jul 25 2021

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A017329, A139249, A139264, A139279 and A139280.
Cf. A017293.

Programs

Formula

a(n) = a(n-1) + 20.
a(n) = 4*A016861(n-1). - Wesley Ivan Hurt, Jan 17 2014
From Stefano Spezia, Jul 25 2021: (Start)
O.g.f.: 4*x*(1 + 4*x)/(1 - x)^2.
E.g.f.: 16 + 4*exp(x)*(5*x - 4).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A273669 Decimal representation ends with either 2 or 9.

Original entry on oeis.org

2, 9, 12, 19, 22, 29, 32, 39, 42, 49, 52, 59, 62, 69, 72, 79, 82, 89, 92, 99, 102, 109, 112, 119, 122, 129, 132, 139, 142, 149, 152, 159, 162, 169, 172, 179, 182, 189, 192, 199, 202, 209, 212, 219, 222, 229, 232, 239, 242, 249, 252, 259, 262, 269, 272, 279, 282, 289, 292, 299, 302, 309, 312, 319, 322, 329, 332, 339
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2016

Keywords

Comments

Natural numbers not in A273664.

Crossrefs

Sequences A017293 and A017377 interleaved.
Cf. also A273664, A249824, A275716.

Programs

  • Mathematica
    Select[Range@ 340, MemberQ[{2, 9}, Mod[#, 10]] &] (* or *)
    Table[{10 n + 2, 10 n + 9}, {n, 0, 33}] // Flatten (* or *)
    CoefficientList[Series[(-5/(1 - x) + (11 - x)/(-1 + x)^2 - 2/(1 + x))/2, {x, 0, 67}], x] (* Michael De Vlieger, Aug 07 2016 *)
  • Scheme
    (define (A273669 n) (+ (* 10 (/ (+ (- n 2) (if (odd? n) 1 0)) 2)) (if (odd? n) 2 9)))

Formula

a(n) = 10*(((n-2)+A000035(n))/2) + 2 [when n is odd], or + 9 [when n is even].
For n >= 5, a(n) = 2*a(n-2) - a(n-4).
a(n) = A126760(A084967(n)).
a(n) = A249746((3*A249745(n))-1).
Other identities. For all n >= 1:
A084967(n) = 5*A007310(n) = A007310(a(n)).
G.f.: x*(x^2+7*x+2)/((x+1)*(x-1)^2).
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt((1+1/sqrt(5))/2)*phi^2*Pi/10 - log(phi)/(2*sqrt(5)) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023
Showing 1-10 of 26 results. Next