cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A275716 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = A273669(a(n)), a(2n+1) = A273664(a(n)).

Original entry on oeis.org

1, 2, 9, 3, 42, 17, 12, 4, 209, 115, 82, 41, 59, 26, 19, 5, 1042, 801, 572, 444, 409, 283, 202, 57, 292, 180, 129, 48, 92, 31, 22, 6, 5209, 5603, 4002, 4881, 2859, 3106, 2219, 733, 2042, 1977, 1412, 620, 1009, 395, 282, 97, 1459, 1258, 899, 525, 642, 334, 239, 74, 459, 213, 152, 63, 109, 40, 29, 7, 26042, 39217
Offset: 0

Views

Author

Antti Karttunen, Aug 06 2016

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
This sequence can be represented as a binary tree. Each left hand child is obtained by applying A273669(n) when the parent contains n, and each right hand child is obtained by applying A273664 to the parent's contents:
1
|
...................2...................
9 3
42......../ \........17 12......../ \........4
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
209 115 82 41 59 26 19 5
1042 801 572 444 409 283 202 57 292 180 129 48 92 31 22 6
etc.

Crossrefs

Inverse: A275715.
Related or similar permutations: A163511, A249824, A245612.

Formula

a(0) = 1, a(1) = 2, a(2n) = A273669(a(n)), a(2n+1) = A273664(a(n)).
As a composition of other permutations:
a(n) = A249824(A163511(n)).

A007310 Numbers congruent to 1 or 5 mod 6.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169, 173, 175
Offset: 1

Views

Author

C. Christofferson (Magpie56(AT)aol.com)

Keywords

Comments

Numbers n such that phi(4n) = phi(3n). - Benoit Cloitre, Aug 06 2003
Or, numbers relatively prime to 2 and 3, or coprime to 6, or having only prime factors >= 5; also known as 5-rough numbers. (Edited by M. F. Hasler, Nov 01 2014: merged with comments from Zak Seidov, Apr 26 2007 and Michael B. Porter, Oct 09 2009)
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 38 ).
Numbers k such that k mod 2 = 1 and (k+1) mod 3 <> 1. - Klaus Brockhaus, Jun 15 2004
Also numbers n such that the sum of the squares of the first n integers is divisible by n, or A000330(n) = n*(n+1)*(2*n+1)/6 is divisible by n. - Alexander Adamchuk, Jan 04 2007
Numbers n such that the sum of squares of n consecutive integers is divisible by n, because A000330(m+n) - A000330(m) = n*(n+1)*(2*n+1)/6 + n*(m^2+n*m+m) is divisible by n independent of m. - Kaupo Palo, Dec 10 2016
A126759(a(n)) = n + 1. - Reinhard Zumkeller, Jun 16 2008
Terms of this sequence (starting from the second term) are equal to the result of the expression sqrt(4!*(k+1) + 1) - but only when this expression yields integral values (that is when the parameter k takes values, which are terms of A144065). - Alexander R. Povolotsky, Sep 09 2008
For n > 1: a(n) is prime if and only if A075743(n-2) = 1; a(2*n-1) = A016969(n-1), a(2*n) = A016921(n-1). - Reinhard Zumkeller, Oct 02 2008
A156543 is a subsequence. - Reinhard Zumkeller, Feb 10 2009
Numbers n such that ChebyshevT(x, x/2) is not an integer (is integer/2). - Artur Jasinski, Feb 13 2010
If 12*k + 1 is a perfect square (k = 0, 2, 4, 10, 14, 24, 30, 44, ... = A152749) then the square root of 12*k + 1 = a(n). - Gary Detlefs, Feb 22 2010
A089128(a(n)) = 1. Complement of A047229(n+1) for n >= 1. See A164576 for corresponding values A175485(a(n)). - Jaroslav Krizek, May 28 2010
Cf. property described by Gary Detlefs in A113801 and in Comment: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (with h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 6). Also a(n)^2 - 1 == 0 (mod 12). - Bruno Berselli, Nov 05 2010 - Nov 17 2010
Numbers n such that ( Sum_{k = 1..n} k^14 ) mod n = 0. (Conjectured) - Gary Detlefs, Dec 27 2011
From Peter Bala, May 02 2018: (Start)
The above conjecture is true. Apply Ireland and Rosen, Proposition 15.2.2. with m = 14 to obtain the congruence 6*( Sum_{k = 1..n} k^14 )/n = 7 (mod n), true for all n >= 1. Suppose n is coprime to 6, then 6 is a unit in Z/nZ, and it follows from the congruence that ( Sum_{k = 1..n} k^14 )/n is an integer. On the other hand, if either 2 divides n or 3 divides n then the congruence shows that ( Sum_{k = 1..n} k^14 )/n cannot be integral. (End)
A126759(a(n)) = n and A126759(m) < n for m < a(n). - Reinhard Zumkeller, May 23 2013
(a(n-1)^2 - 1)/24 = A001318(n), the generalized pentagonal numbers. - Richard R. Forberg, May 30 2013
Numbers k for which A001580(k) is divisible by 3. - Bruno Berselli, Jun 18 2014
Numbers n such that sigma(n) + sigma(2n) = sigma(3n). - Jahangeer Kholdi and Farideh Firoozbakht, Aug 15 2014
a(n) are values of k such that Sum_{m = 1..k-1} m*(k-m)/k is an integer. Sums for those k are given by A062717. Also see Detlefs formula below based on A062717. - Richard R. Forberg, Feb 16 2015
a(n) are exactly those positive integers m such that the sequence b(n) = n*(n + m)*(n + 2*m)/6 is integral, and also such that the sequence c(n) = n*(n + m)*(n + 2*m)*(n + 3*m)/24 is integral. Cf. A007775. - Peter Bala, Nov 13 2015
Along with 2, these are the numbers k such that the k-th Fibonacci number is coprime to every Lucas number. - Clark Kimberling, Jun 21 2016
This sequence is the Engel expansion of 1F2(1; 5/6, 7/6; 1/36) + 1F2(1; 7/6, 11/6; 1/36)/5. - Benedict W. J. Irwin, Dec 16 2016
The sequence a(n), n >= 4 is generated by the successor of the pair of polygonal numbers {P_s(4) + 1, P_(2*s - 1)(3) + 1}, s >= 3. - Ralf Steiner, May 25 2018
The asymptotic density of this sequence is 1/3. - Amiram Eldar, Oct 18 2020
Also, the only vertices in the odd Collatz tree A088975 that are branch values to other odd nodes t == 1 (mod 2) of A005408. - Heinz Ebert, Apr 14 2021
From Flávio V. Fernandes, Aug 01 2021: (Start)
For any two terms j and k, the product j*k is also a term (the same property as p^n and smooth numbers).
From a(2) to a(phi(A033845(n))), or a((A033845(n))/3), the terms are the totatives of the A033845(n) itself. (End)
Also orders n for which cyclic and semicyclic diagonal Latin squares exist (see A123565 and A342990). - Eduard I. Vatutin, Jul 11 2023
If k is in the sequence, then k*2^m + 3 is also in the sequence, for all m > 0. - Jules Beauchamp, Aug 29 2024

Examples

			G.f. = x + 5*x^2 + 7*x^3 + 11*x^4 + 13*x^5 + 17*x^6 + 19*x^7 + 23*x^8 + ...
		

References

  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1980.

Crossrefs

A005408 \ A016945. Union of A016921 and A016969; union of A038509 and A140475. Essentially the same as A038179. Complement of A047229. Subsequence of A186422.
Cf. A000330, A001580, A002194, A019670, A032528 (partial sums), A038509 (subsequence of composites), A047209, A047336, A047522, A056020, A084967, A090771, A091998, A144065, A175885-A175887.
For k-rough numbers with other values of k, see A000027, A005408, A007775, A008364-A008366, A166061, A166063.
Cf. A126760 (a left inverse).
Row 3 of A260717 (without the initial 1).
Cf. A105397 (first differences).

Programs

Formula

a(n) = (6*n + (-1)^n - 3)/2. - Antonio Esposito, Jan 18 2002
a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4. - Roger L. Bagula
a(n) = 3*n - 1 - (n mod 2). - Zak Seidov, Jan 18 2006
a(1) = 1 then alternatively add 4 and 2. a(1) = 1, a(n) = a(n-1) + 3 + (-1)^n. - Zak Seidov, Mar 25 2006
1 + 1/5^2 + 1/7^2 + 1/11^2 + ... = Pi^2/9 [Jolley]. - Gary W. Adamson, Dec 20 2006
For n >= 3 a(n) = a(n-2) + 6. - Zak Seidov, Apr 18 2007
From R. J. Mathar, May 23 2008: (Start)
Expand (x+x^5)/(1-x^6) = x + x^5 + x^7 + x^11 + x^13 + ...
O.g.f.: x*(1+4*x+x^2)/((1+x)*(1-x)^2). (End)
a(n) = 6*floor(n/2) - 1 + 2*(n mod 2). - Reinhard Zumkeller, Oct 02 2008
1 + 1/5 - 1/7 - 1/11 + + - - ... = Pi/3 = A019670 [Jolley eq (315)]. - Jaume Oliver Lafont, Oct 23 2009
a(n) = ( 6*A062717(n)+1 )^(1/2). - Gary Detlefs, Feb 22 2010
a(n) = 6*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i), with n > 1. - Bruno Berselli, Nov 05 2010
a(n) = 6*n - a(n-1) - 6 for n>1, a(1) = 1. - Vincenzo Librandi, Nov 18 2010
Sum_{n >= 1} (-1)^(n+1)/a(n) = A093766 [Jolley eq (84)]. - R. J. Mathar, Mar 24 2011
a(n) = 6*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
a(n) = 3*n + ((n+1) mod 2) - 2. - Gary Detlefs, Jan 08 2012
a(n) = 2*n + 1 + 2*floor((n-2)/2) = 2*n - 1 + 2*floor(n/2), leading to the o.g.f. given by R. J. Mathar above. - Wolfdieter Lang, Jan 20 2012
1 - 1/5 + 1/7 - 1/11 + - ... = Pi*sqrt(3)/6 = A093766 (L. Euler). - Philippe Deléham, Mar 09 2013
1 - 1/5^3 + 1/7^3 - 1/11^3 + - ... = Pi^3*sqrt(3)/54 (L. Euler). - Philippe Deléham, Mar 09 2013
gcd(a(n), 6) = 1. - Reinhard Zumkeller, Nov 14 2013
a(n) = sqrt(6*n*(3*n + (-1)^n - 3)-3*(-1)^n + 5)/sqrt(2). - Alexander R. Povolotsky, May 16 2014
a(n) = 3*n + 6/(9*n mod 6 - 6). - Mikk Heidemaa, Feb 05 2016
From Mikk Heidemaa, Feb 11 2016: (Start)
a(n) = 2*floor(3*n/2) - 1.
a(n) = A047238(n+1) - 1. (suggested by Michel Marcus) (End)
E.g.f.: (2 + (6*x - 3)*exp(x) + exp(-x))/2. - Ilya Gutkovskiy, Jun 18 2016
From Bruno Berselli, Apr 27 2017: (Start)
a(k*n) = k*a(n) + (4*k + (-1)^k - 3)/2 for k>0 and odd n, a(k*n) = k*a(n) + k - 1 for even n. Some special cases:
k=2: a(2*n) = 2*a(n) + 3 for odd n, a(2*n) = 2*a(n) + 1 for even n;
k=3: a(3*n) = 3*a(n) + 4 for odd n, a(3*n) = 3*a(n) + 2 for even n;
k=4: a(4*n) = 4*a(n) + 7 for odd n, a(4*n) = 4*a(n) + 3 for even n;
k=5: a(5*n) = 5*a(n) + 8 for odd n, a(5*n) = 5*a(n) + 4 for even n, etc. (End)
From Antti Karttunen, May 20 2017: (Start)
a(A273669(n)) = 5*a(n) = A084967(n).
a((5*n)-3) = A255413(n).
A126760(a(n)) = n. (End)
a(2*m) = 6*m - 1, m >= 1; a(2*m + 1) = 6*m + 1, m >= 0. - Ralf Steiner, May 17 2018
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(3) (A002194).
Product_{n>=2} (1 + (-1)^n/a(n)) = Pi/3 (A019670). (End)

A126760 a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n+5) = 2n + 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 5, 3, 2, 1, 6, 1, 7, 2, 3, 4, 8, 1, 9, 5, 1, 3, 10, 2, 11, 1, 4, 6, 12, 1, 13, 7, 5, 2, 14, 3, 15, 4, 2, 8, 16, 1, 17, 9, 6, 5, 18, 1, 19, 3, 7, 10, 20, 2, 21, 11, 3, 1, 22, 4, 23, 6, 8, 12, 24, 1, 25, 13, 9, 7, 26, 5, 27, 2, 1, 14, 28, 3, 29, 15, 10, 4, 30, 2
Offset: 0

Views

Author

N. J. A. Sloane, Feb 19 2007

Keywords

Comments

For further information see A126759, which provided the original motivation for this sequence.
From Antti Karttunen, Jan 28 2015: (Start)
The odd bisection of the sequence gives A253887, and the even bisection gives the sequence itself.
A254048 gives the sequence obtained when this sequence is restricted to A007494 (numbers congruent to 0 or 2 mod 3).
For all odd numbers k present in square array A135765, a(k) = the column index of k in that array. (End)
A322026 and this sequence (without the initial zero) are ordinal transforms of each other. - Antti Karttunen, Feb 09 2019
Also ordinal transform of A065331 (after the initial 0). - Antti Karttunen, Sep 08 2024

Crossrefs

One less than A126759.
Cf. A347233 (Möbius transform) and also A349390, A349393, A349395 for other Dirichlet convolutions.
Ordinal transform of A065331 and of A322026 (after the initial 0).
Related arrays: A135765, A254102.

Programs

  • Mathematica
    f[n_] := Block[{a}, a[0] = 0; a[1] = a[2] = a[3] = 1; a[x_] := Which[EvenQ@ x, a[x/2], Mod[x, 3] == 0, a[x/3], Mod[x, 6] == 1, 2 (x - 1)/6 + 1, Mod[x, 6] == 5, 2 (x - 5)/6 + 2]; Table[a@ i, {i, 0, n}]] (* Michael De Vlieger, Feb 03 2015 *)
  • PARI
    A126760(n)={n&&n\=3^valuation(n,3)<M. F. Hasler, Jan 19 2016

Formula

a(n) = A126759(n)-1. [The original definition.]
From Antti Karttunen, Jan 28 2015: (Start)
a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n+5) = 2n + 2.
Or with the last clause represented in another way:
a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n-1) = 2n.
Other identities. For all n >= 1:
a(n) = A253887(A003602(n)).
a(6n-3) = a(4n-2) = a(2n-1) = A253887(n).
(End)
a(n) = A249746(A003602(A064989(n))). - Antti Karttunen, Feb 04 2015
a(n) = A323882(4*n). - Antti Karttunen, Apr 18 2022

Extensions

Name replaced with an independent recurrence and the old description moved to the Formula section - Antti Karttunen, Jan 28 2015

A084967 Multiples of 5 whose GCD with 6 is 1.

Original entry on oeis.org

5, 25, 35, 55, 65, 85, 95, 115, 125, 145, 155, 175, 185, 205, 215, 235, 245, 265, 275, 295, 305, 325, 335, 355, 365, 385, 395, 415, 425, 445, 455, 475, 485, 505, 515, 535, 545, 565, 575, 595, 605, 625, 635, 655, 665, 685, 695, 715, 725, 745, 755, 775, 785
Offset: 1

Views

Author

Robert G. Wilson v, Jun 15 2003

Keywords

Comments

Third row of A083140.
Positions of 5 in A020639. - Zak Seidov, Apr 29 2015

Crossrefs

Cf. A038110, A038111, A083140, A007310 (5-rough numbers), A273669.
Cf. A020639. - Zak Seidov, Apr 29 2015
Essentially the same as A063149.

Programs

  • Mathematica
    5Select[ Range[160], GCD[ #, 2*3] == 1 & ]
    Select[Range[5, 785, 10], Mod[#, 3] > 0 &] (* Zak Seidov, Apr 29 2015 *)
    a[1] = 5; a[n_] := a[n] = a[n - 1] + 10*(2 - Mod[n, 2]); Table[a[n], {n, 50}] (* Zak Seidov, Apr 29 2015 *)
  • PARI
    is(n)=n%5==0 && gcd(n,6)==1 \\ Charles R Greathouse IV, Nov 19 2014
    
  • PARI
    list(lim)=5*select(k->gcd(n,6)==1, [1..lim\5]) \\ Charles R Greathouse IV, Nov 19 2014

Formula

Numbers of the form 5k for which gcd(5k, 6) = 1.
a(n) = 5*A007310(n). - Adriano Caroli, Oct 03 2010
From Colin Barker, Feb 24 2013: (Start)
a(n) = 5*(-3 + (-1)^n + 6*n)/2.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: 5*x*(x^2+4*x+1) / ((x-1)^2*(x+1)). (End)
Limit_{n->infinity} a(n)/n = A038111(3)/A038110(3) = 15. - Vladimir Shevelev, Jan 20 2015
For n > 2, a(n) = a(n-2) + 30. - Zak Seidov, Apr 29 2015
a(n) = A007310(A273669(n)). - Antti Karttunen, May 20 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(10*sqrt(3)). - Amiram Eldar, Nov 03 2022

A249746 Permutation of natural numbers: a(n) = A126760(A249735(n)) = A249824(A064216(n)).

Original entry on oeis.org

1, 2, 3, 4, 9, 5, 6, 12, 7, 8, 19, 10, 17, 42, 11, 13, 22, 26, 14, 29, 15, 16, 59, 18, 41, 32, 20, 31, 39, 21, 23, 92, 40, 24, 49, 25, 27, 82, 48, 28, 209, 30, 45, 52, 33, 63, 62, 54, 34, 109, 35, 36, 129, 37, 38, 69, 43, 68, 142, 70, 57, 72, 115, 44, 79, 46, 85, 292, 47, 50, 89, 74, 73, 202, 51, 53, 159, 87, 55, 99, 107, 56, 152, 58, 97, 192, 60
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2014

Keywords

Comments

Permutation obtained from the odd bisection of A003961 (or from the odd bisection of A048673).

Examples

			a(5) = 9 because of the following. 2*A064216(5) = 2*4 = 8 = 2^3. We replace the prime factor 2 of 8 with the next prime 3 to get 3^3, then replace 3 with 5 to get 5^3 = 125. The smallest prime factor of 125 is 5. 125 is the 9th term of A084967: 5, 25, 35, 55, 65, 85, 95, 115, 125, ..., thus a(5) = 9.
		

Crossrefs

Programs

  • Mathematica
    t = PositionIndex[FactorInteger[#][[1, 1]] & /@ Range[10^6]]; f[n_] := Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; Flatten@ Map[Position[Lookup[t, FactorInteger[#][[1, 1]] ], #] &[f@ f[2 #]] &, Table[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1], {n, 87}]] (* Michael De Vlieger, Jul 25 2016, Version 10 *)
  • Scheme
    (define (A249746 n) (define (Ainv_of_A007310off0 n) (+ (* 2 (floor->exact (/ n 6))) (/ (- (modulo n 6) 1) 4))) (+ 1 (Ainv_of_A007310off0 (A003961 (+ n n -1)))))

Formula

a(n) = 1 + f(A003961(2n - 1)), where f(n) = 2*floor[n/6] + ((n mod 6)-1)/4. [Here 1 + f(A007310(n)) = n.]
a(n) = A126760(A249735(n)). - Antti Karttunen, Jul 25 2016
As a composition of related permutations:
a(n) = A249824(A064216(n)).
Other identities. For all n >= 1:
A249735(n) = A007310(a(n)).
a(3n-1) = A273669(a(n)) and a(A254049(n)) = A273664(a(n)). - Antti Karttunen, Aug 07 2016

A249824 Permutation of natural numbers: a(n) = A078898(A003961(A003961(2*n))).

Original entry on oeis.org

1, 2, 3, 9, 4, 12, 5, 42, 17, 19, 6, 59, 7, 22, 26, 209, 8, 82, 10, 92, 31, 29, 11, 292, 41, 32, 115, 109, 13, 129, 14, 1042, 40, 39, 48, 409, 15, 49, 45, 459, 16, 152, 18, 142, 180, 52, 20, 1459, 57, 202, 54, 159, 21, 572, 63, 542, 68, 62, 23, 642, 24, 69, 213
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Examples

			a(4) = 9 because of the following. 2n = 2*4 = 8 = 2^3. We replace the prime factor 2 of 8 with the next prime 3 to get 3^3, then replace 3 with 5 to get 5^3 = 125. The smallest prime factor of 125 is 5. 125 is the 9th term of A084967: 5, 25, 35, 55, 65, 85, 95, 115, 125, ..., thus a(4) = 9.
		

Crossrefs

Programs

  • Mathematica
    t = PositionIndex[FactorInteger[#][[1, 1]] & /@ Range[10^4]]; f[n_] := Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; Flatten@ Table[Position[Lookup[t, FactorInteger[#][[1, 1]] ], #] &[f@ f[2 n]], {n, 120}] (* Michael De Vlieger, Jul 25 2016, Version 10 *)
  • Scheme
    (define (A249824 n) (A078898 (A003961 (A003961 (* 2 n)))))

Formula

a(n) = A078898(A246278(3,n)).
As a composition of other permutations:
a(n) = A249746(A048673(n)).
a(n) = A250475(A249826(n)).
a(n) = A275716(A243071(n)).
Other identities. For all n >= 1:
a(2n) = A273669(a(n)) and a(A003961(n)) = A273664(a(n)). -- Antti Karttunen, Aug 07 2016

A273664 a(n) = A249746(A032766(n)).

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 10, 17, 11, 13, 26, 14, 15, 16, 18, 41, 20, 31, 21, 23, 40, 24, 25, 27, 48, 28, 30, 45, 33, 63, 54, 34, 35, 36, 37, 38, 43, 68, 70, 57, 115, 44, 46, 85, 47, 50, 74, 73, 51, 53, 87, 55, 107, 56, 58, 97, 60, 180, 61, 64, 96, 83, 65, 66, 67, 71, 114, 101, 100, 75, 110, 136, 108, 76, 77, 78, 80, 124, 81
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2016

Keywords

Crossrefs

Cf. also A273669 (natural numbers not in this sequence).

Programs

  • Mathematica
    t = PositionIndex[FactorInteger[#][[1, 1]] & /@ Range[10^6]]; f[n_] := Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; Flatten@ Map[Position[Lookup[t, FactorInteger[#][[1, 1]]], #] &[f@ f[2 #]] &, Map[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@#, Last@#] &@ Transpose@ FactorInteger[2 # - 1] &, Floor[#/2] + # & /@ Range@ 80]] (* Michael De Vlieger, Aug 07 2016, Version 10 *)
  • Scheme
    (define (A273664 n) (A249746 (A032766 n)))

Formula

a(n) = A249746(A032766(n)).
a(n) = A249824(A254050(n)).
a(n) = A249746(A254049(A249745(n))).

A306277 Numbers congruent to 1 or 8 mod 10.

Original entry on oeis.org

1, 8, 11, 18, 21, 28, 31, 38, 41, 48, 51, 58, 61, 68, 71, 78, 81, 88, 91, 98, 101, 108, 111, 118, 121, 128, 131, 138, 141, 148, 151, 158, 161, 168, 171, 178, 181, 188, 191, 198, 201, 208, 211, 218, 221, 228, 231, 238, 241, 248, 251, 258, 261, 268, 271, 278, 281, 288, 291, 298, 301, 308, 311, 318, 321
Offset: 1

Views

Author

Davis Smith, Feb 02 2019

Keywords

Comments

A007310(a(n)+1) is always a multiple of 5.
a(1) = 1, a(n+1) = a(n)+7 when n is odd, a(n+1) = a(n)+3 when n is even.
a(n) mod 6 follows the following pattern: 1,2,5,0,3,4,1,2,5,0,3,4, and so on.
A020639(A007310(a(n)+1)) = 5.

Crossrefs

Cf. A017281, A017365 (bisections).
One less than A273669.

Programs

  • Maple
    seq(seq(10*i+j, j=[1, 8]), i=0..350);
  • Mathematica
    Select[Range[350], MemberQ[{1, 8}, Mod[#, 10]] &]
  • PARI
    for(n=1, 350, if((n%10==1) || (n%10==8), print1(n, ", ")))
    
  • PARI
    Vec(x*(1 + 7*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 09 2019

Formula

a(n) = 5*n - 2*A000034(n+1).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = A273669(n) - 1. - Antti Karttunen, Feb 07 2019
G.f.: x*(1 + 7*x + 2*x^2) / ((1 - x)^2*(1 + x)). - Colin Barker, Feb 09 2019
E.g.f.: 2 + (5*x - 3)*exp(x) + exp(-x). - David Lovler, Sep 07 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = (5+sqrt(5))^(3/2)*phi*Pi/(100*sqrt(2)) + log(phi)/(2*sqrt(5)) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

A306285 Numbers congruent to 4 or 21 mod 26.

Original entry on oeis.org

4, 21, 30, 47, 56, 73, 82, 99, 108, 125, 134, 151, 160, 177, 186, 203, 212, 229, 238, 255, 264, 281, 290, 307, 316, 333, 342, 359, 368, 385, 394, 411, 420, 437, 446, 463, 472, 489, 498, 515, 524, 541, 550, 567, 576, 593, 602, 619, 628, 645, 654, 671, 680, 697, 706, 723, 732, 749, 758, 775, 784, 801, 810, 827, 836, 853, 862
Offset: 1

Views

Author

Davis Smith, Feb 03 2019

Keywords

Comments

A007310(a(n)+1) is always a multiple of 13.
a(n) mod 6 follows the following pattern: 4,3,0,5,2,1,4,3,0,5,2,1 and so on.
a(n) mod 4 = A010873(n).
A020639(A007310(a(n)+1)) = 5 when n is congruent to 2 or 9 (mod 10) (n is a term in A273669). It equals 7 when n is congruent to 3 or 12 (mod 14) but not congruent to 2 or 9 (mod 10). It equals 11 when n is congruent to 4 or 19 (mod 22) but not congruent to 2 or 9 (mod 10) and not congruent to 3 or 12 (mod 14). Otherwise, it is 13.

Crossrefs

Programs

  • Maple
    seq(seq(26*i+j, j=[4, 21]), i=0..200);
  • Mathematica
    Select[Range[200], MemberQ[{4, 21}, Mod[#, 26]] &]
  • PARI
    for(n=1, 1000, if((n%26==4) || (n%26==21), print1(n, ", ")))
    
  • PARI
    Vec(x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 08 2019

Formula

a(n) = 13*n - A010720(n+1).
From Colin Barker, Feb 08 2019: (Start)
G.f.: x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)).
a(n) = 13*n - 5 for n even.
a(n) = 13*n - 9 for n odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
E.g.f.: 5 + (13*x - 7)*exp(x) + 2*exp(-x). - David Lovler, Sep 09 2022

A306289 The smallest prime factor of numbers greater than 1 and coprime to 6.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 5, 29, 31, 5, 37, 41, 43, 47, 7, 53, 5, 59, 61, 5, 67, 71, 73, 7, 79, 83, 5, 89, 7, 5, 97, 101, 103, 107, 109, 113, 5, 7, 11, 5, 127, 131, 7, 137, 139, 11, 5, 149, 151, 5, 157, 7, 163, 167, 13, 173, 5, 179, 181, 5, 11, 191, 193
Offset: 1

Views

Author

Davis Smith, Feb 03 2019

Keywords

Comments

a(n) is the least prime factor of the n-th number that is greater than 1 and congruent to 1 or 5 (mod 6).
a(n) = 5 when n is congruent to {1, 8} (mod 10) (n is a term in A017281, A017365, or A306277). a(n) = 7 when n is congruent to {2, 11} (mod 14) but not {1, 8} (mod 10). a(n) = 11 when n is congruent to {3, 18} (mod 22) but not a case where it equals 5 or 7. a(n) = 13 when n is congruent to {4, 21} (mod 26) (n is a term in A306285) but not a case where it equals 5, 7, or 11. a(n) = 17 when n is congruent to {5, 28} (mod 34) but not a case where it equals 5, 7, 11, or 13. a(n) = 19 when n is congruent to {6, 31} (mod 38) (n is a term in A306331) but not a case where it equals 5, 7, 11, 13, or 17.
Conjecture: This pattern continues indefinitely. a(n) = A007310(m + 1) when n is congruent to {m, A306277(m + 1)} (mod A091999(m + 1)) but not congruent to {k, A306277(k + 1)} (mod A091999(k + 1)), m > k >= 1. The indices of the first appearance of a number in this sequence supports this conjecture in that they are never, for m > 0, congruent to A306277(m + 1) mod A091999(m + 1).

Examples

			a(n) is the least term, other than 0, in n-th row of the array A(m,n), where A(m,n) is A007310(m + 1) when A007310(n + 1) mod A007310(m + 1) is congruent to 0, otherwise 0.
Table begins
  \m  1 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 ...
  n\
   1| 5 0  0  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   2| 0 7  0  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   3| 0 0 11  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   4| 0 0  0 13  0  0  0  0  0   0   0   0   0   0   0   0 ...
   5| 0 0  0  0 17  0  0  0  0   0   0   0   0   0   0   0 ...
   6| 0 0  0  0  0 19  0  0  0   0   0   0   0   0   0   0 ...
   7| 0 0  0  0  0  0 23  0  0   0   0   0   0   0   0   0 ...
   8| 5 0  0  0  0  0  0 25  0   0   0   0   0   0   0   0 ...
   9| 0 0  0  0  0  0  0  0 29   0   0   0   0   0   0   0 ...
  10| 0 0  0  0  0  0  0  0  0  31   0   0   0   0   0   0 ...
  11| 5 7  0  0  0  0  0  0  0   0  35   0   0   0   0   0 ...
  12| 0 0  0  0  0  0  0  0  0   0   0  37   0   0   0   0 ...
  13| 0 0  0  0  0  0  0  0  0   0   0   0  41   0   0   0 ...
  14| 0 0  0  0  0  0  0  0  0   0   0   0   0  43   0   0 ...
  15| 0 0  0  0  0  0  0  0  0   0   0   0   0   0  47   0 ...
  16| 0 7  0  0  0  0  0  0  0   0   0   0   0   0   0  49 ...
For the n-th row of this square array, the leftmost terms, other than 0, are the factors of A(n,n). A(n,n) = A007310(n + 1). If for every m, m < n, A(m,n) = 0, then a(n) = A007310(n + 1) and A007310(n + 1) is prime.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 2, Section 2, Problems 96 and 105.

Crossrefs

Programs

  • Maple
    seq(min(op(numtheory[factorset] (6*ceil(n/2)+(-1)^n))), n=1..64) ;
  • Mathematica
    FactorInteger[Rest@ Flatten@ Array[6 # + {1, 5} &, 33, 0]][[All, 1, 1]] (* Michael De Vlieger, Feb 15 2019 *)
    FactorInteger[#][[1,1]]&/@Select[Range[2,200],CoprimeQ[#,6]&] (* Harvey P. Dale, Jul 10 2020 *)
  • PARI
    for(n=2, 211, if((n%6==1)||(n%6==5), print1(factor(n)[1,1], ", ")))
    
  • PARI
    vector(64,n,factor(6*ceil(n/2)+(-1)^n)[1,1])
    
  • PARI
    a(n) = n++; factor(n\2*6-(-1)^n)[1,1]; \\ Michel Marcus, Feb 06 2019

Formula

a(n) = A020639(A007310(n + 1)).
a(n) = A020639(3n + A000034(n + 1)).
a(n) = A020639(6*ceiling(n/2) + (-1)^n).
a(floor(prime(n + 2)/3)) = prime(n + 2).
Showing 1-10 of 14 results. Next