cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A249746 Permutation of natural numbers: a(n) = A126760(A249735(n)) = A249824(A064216(n)).

Original entry on oeis.org

1, 2, 3, 4, 9, 5, 6, 12, 7, 8, 19, 10, 17, 42, 11, 13, 22, 26, 14, 29, 15, 16, 59, 18, 41, 32, 20, 31, 39, 21, 23, 92, 40, 24, 49, 25, 27, 82, 48, 28, 209, 30, 45, 52, 33, 63, 62, 54, 34, 109, 35, 36, 129, 37, 38, 69, 43, 68, 142, 70, 57, 72, 115, 44, 79, 46, 85, 292, 47, 50, 89, 74, 73, 202, 51, 53, 159, 87, 55, 99, 107, 56, 152, 58, 97, 192, 60
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2014

Keywords

Comments

Permutation obtained from the odd bisection of A003961 (or from the odd bisection of A048673).

Examples

			a(5) = 9 because of the following. 2*A064216(5) = 2*4 = 8 = 2^3. We replace the prime factor 2 of 8 with the next prime 3 to get 3^3, then replace 3 with 5 to get 5^3 = 125. The smallest prime factor of 125 is 5. 125 is the 9th term of A084967: 5, 25, 35, 55, 65, 85, 95, 115, 125, ..., thus a(5) = 9.
		

Crossrefs

Programs

  • Mathematica
    t = PositionIndex[FactorInteger[#][[1, 1]] & /@ Range[10^6]]; f[n_] := Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; Flatten@ Map[Position[Lookup[t, FactorInteger[#][[1, 1]] ], #] &[f@ f[2 #]] &, Table[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1], {n, 87}]] (* Michael De Vlieger, Jul 25 2016, Version 10 *)
  • Scheme
    (define (A249746 n) (define (Ainv_of_A007310off0 n) (+ (* 2 (floor->exact (/ n 6))) (/ (- (modulo n 6) 1) 4))) (+ 1 (Ainv_of_A007310off0 (A003961 (+ n n -1)))))

Formula

a(n) = 1 + f(A003961(2n - 1)), where f(n) = 2*floor[n/6] + ((n mod 6)-1)/4. [Here 1 + f(A007310(n)) = n.]
a(n) = A126760(A249735(n)). - Antti Karttunen, Jul 25 2016
As a composition of related permutations:
a(n) = A249824(A064216(n)).
Other identities. For all n >= 1:
A249735(n) = A007310(a(n)).
a(3n-1) = A273669(a(n)) and a(A254049(n)) = A273664(a(n)). - Antti Karttunen, Aug 07 2016

A250475 Permutation of natural numbers: a(n) = A249824(A249825(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 9, 16, 18, 20, 21, 23, 24, 12, 25, 27, 28, 19, 30, 33, 34, 35, 36, 37, 22, 17, 38, 43, 29, 44, 46, 26, 47, 50, 51, 32, 53, 55, 41, 56, 58, 60, 31, 61, 64, 65, 66, 39, 40, 67, 49, 48, 71, 75, 76, 77, 78, 80, 63, 81, 45, 84, 52, 86, 88, 90, 91, 93, 94, 62, 57, 95, 70, 69, 98, 103, 104, 105, 54, 74, 72, 106, 111, 68, 42
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2014

Keywords

Crossrefs

Inverse: A250476.
Row 3 of A251721.

Programs

Formula

a(n) = A249824(A249825(n)).

A163511 a(0)=1. a(n) = p(A000120(n)) * Product_{m=1..A000120(n)} p(m)^A163510(n,m), where p(m) is the m-th prime.

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 6, 5, 16, 27, 18, 25, 12, 15, 10, 7, 32, 81, 54, 125, 36, 75, 50, 49, 24, 45, 30, 35, 20, 21, 14, 11, 64, 243, 162, 625, 108, 375, 250, 343, 72, 225, 150, 245, 100, 147, 98, 121, 48, 135, 90, 175, 60, 105, 70, 77, 40, 63, 42, 55, 28, 33, 22, 13, 128
Offset: 0

Views

Author

Leroy Quet, Jul 29 2009

Keywords

Comments

This is a permutation of the positive integers.
From Antti Karttunen, Jun 20 2014: (Start)
Note the indexing: the domain starts from 0, while the range excludes zero, thus this is neither a bijection on the set of nonnegative integers nor on the set of positive natural numbers, but a bijection from the former set to the latter.
Apart from that discrepancy, this could be viewed as yet another "entanglement permutation" where the two complementary pairs to be interwoven together are even and odd numbers (A005843/A005408) which are entangled with the complementary pair even numbers (taken straight) and odd numbers in the order they appear in A003961: (A005843/A003961). See also A246375 which has almost the same recurrence.
Note how the even bisection halved gives the same sequence back. (For a(0)=1, take ceiling of 1/2).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
This irregular table can be represented as a binary tree. Each child to the left is obtained by doubling the parent, and each child to the right is obtained by applying A003961 to the parent:
1
|
...................2...................
4 3
8......../ \........9 6......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 27 18 25 12 15 10 7
32 81 54 125 36 75 50 49 24 45 30 35 20 21 14 11
etc.
Sequence A005940 is obtained by scanning the same tree level by level in mirror image fashion. Also in binary trees A253563 and A253565 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) gives the distance of n from 1 in all these trees, and A252463 gives the parent of the node containing n.
A252737(n) gives the sum and A252738(n) the product of terms on row n (where 1 is on row 0, 1 on row 1, 3 and 4 on row 2, etc.). A252745(n) gives the number of nodes on level n whose left child is smaller than the right child, and A252744(n) is an indicator function for those nodes.
(End)
Note that the idea behind maps like this (and the mirror image A005940) admits also using alternative orderings of primes, not just standard magnitude-wise ordering (A000040). For example, A332214 is a similar sequence but with primes rearranged as in A332211, and A332817 is obtained when primes are rearranged as in A108546. - Antti Karttunen, Mar 11 2020
From Lorenzo Sauras Altuzarra, Nov 28 2020: (Start)
This sequence is generated from A228351 by applying the following procedure: 1) eliminate the compositions that end in one unless the first one, 2) subtract one unit from every component, 3) replace every tuple [t_1, ..., t_r] by Product_{k=1..r} A000040(k)^(t_k) (see the examples).
Is it true that a(n) = A337909(n+1) if and only if a(n+1) is not a term of A161992?
Does this permutation have any other cycle apart from (1), (2) and (6, 9, 16, 7)? (End)
From Antti Karttunen, Jul 25 2023: (Start)
(In the above question, it is assumed that the starting offset would be 1 instead of 0).
Questions:
Does a(n) = 1+A054429(n) hold only when n is of the form 2^k times 1, 3 or 7, i.e., one of the terms of A029748?
It seems that A007283 gives all fixed points of map n -> a(n), like A335431 seems to give all fixed points of map n -> A332214(n). Is there a general rule for mappings like these that the fixed points (if they exist) must be of the form 2^k times a certain kind of prime, i.e., that any odd composite (times 2^k) can certainly be excluded? See also note in A029747.
(End)
If the conjecture given in A364297 holds, then it implies the above conjecture about A007283. See also A364963. - Antti Karttunen, Sep 06 2023
Conjecture: a(n^k) is never of the form x^k, for any integers n > 0, k > 1, x >= 1. This holds at least for squares, cubes, seventh and eleventh powers (see A365808, A365801, A366287 and A366391). - Antti Karttunen, Sep 24 2023, Oct 10 2023.
See A365805 for why the above holds for any n^k, with k > 1. - Antti Karttunen, Nov 23 2023

Examples

			For n=3, whose binary representation is "11", we have A000120(3)=2, with A163510(3,1) = A163510(3,2) = 0, thus a(3) = p(2) * p(1)^0 * p(2)^0 = 3*1*1 = 3.
For n=9, "1001" in binary, we have A000120(9)=2, with A163510(9,1) = 0 and A163510(9,2) = 2, thus a(9) = p(2) * p(1)^0 * p(2)^2 = 3*1*9 = 27.
For n=10, "1010" in binary, we have A000120(10)=2, with A163510(10,1) = 1 and A163510(10,2) = 1, thus a(10) = p(2) * p(1)^1 * p(2)^1 = 3*2*3 = 18.
For n=15, "1111" in binary, we have A000120(15)=4, with A163510(15,1) = A163510(15,2) = A163510(15,3) = A163510(15,4) = 0, thus a(15) = p(4) * p(1)^0 * p(2)^0 * p(3)^0 * p(4)^0 = 7*1*1*1*1 = 7.
[1], [2], [1,1], [3], [1,2], [2,1] ... -> [1], [2], [3], [1,2], ... -> [0], [1], [2], [0,1], ... -> 2^0, 2^1, 2^2, 2^0*3^1, ... = 1, 2, 4, 3, ... - _Lorenzo Sauras Altuzarra_, Nov 28 2020
		

Crossrefs

Inverse: A243071.
Cf. A007283 (known positions where a(n)=n), A029747, A029748, A364255 [= gcd(n,a(n))], A364258 [= a(n)-n], A364287 (where a(n) < n), A364292 (where a(n) <= n), A364494 (where n|a(n)), A364496 (where a(n)|n), A364963, A364297.
Cf. A365808 (positions of squares), A365801 (of cubes), A365802 (of fifth powers), A365805 [= A052409(a(n))], A366287, A366391.
Cf. A005940, A332214, A332817, A366275 (variants).

Programs

  • Mathematica
    f[n_] := Reverse@ Map[Ceiling[(Length@ # - 1)/2] &, DeleteCases[Split@ Join[Riffle[IntegerDigits[n, 2], 0], {0}], {k__} /; k == 1]]; {1}~Join~
    Table[Function[t, Prime[t] Product[Prime[m]^(f[n][[m]]), {m, t}]][DigitCount[n, 2, 1]], {n, 120}] (* Michael De Vlieger, Jul 25 2016 *)
  • Python
    from sympy import prime
    def A163511(n):
        if n:
            k, c, m = n, 0, 1
            while k:
                c += 1
                m *= prime(c)**(s:=(~k&k-1).bit_length())
                k >>= s+1
            return m*prime(c)
        return 1 # Chai Wah Wu, Jul 17 2023

Formula

For n >= 1, a(2n) is even, a(2n+1) is odd. a(2^k) = 2^(k+1), for all k >= 0.
From Antti Karttunen, Jun 20 2014: (Start)
a(0) = 1, a(1) = 2, a(2n) = 2*a(n), a(2n+1) = A003961(a(n)).
As a more general observation about the parity, we have:
For n >= 1, A007814(a(n)) = A135523(n) = A007814(n) + A209229(n). [This permutation preserves the 2-adic valuation of n, except when n is a power of two, in which cases that value is incremented by one.]
For n >= 1, A055396(a(n)) = A091090(n) = A007814(n+1) + 1 - A036987(n).
For n >= 1, a(A000225(n)) = A000040(n).
(End)
From Antti Karttunen, Oct 11 2014: (Start)
As a composition of related permutations:
a(n) = A005940(1+A054429(n)).
a(n) = A064216(A245612(n))
a(n) = A246681(A246378(n)).
Also, for all n >= 0, it holds that:
A161511(n) = A243503(a(n)).
A243499(n) = A243504(a(n)).
(End)
More linking identities from Antti Karttunen, Dec 30 2017: (Start)
A046523(a(n)) = A278531(n). [See also A286531.]
A278224(a(n)) = A285713(n). [Another filter-sequence.]
A048675(a(n)) = A135529(n) seems to hold for n >= 1.
A250245(a(n)) = A252755(n).
A252742(a(n)) = A252744(n).
A245611(a(n)) = A253891(n).
A249824(a(n)) = A275716(n).
A292263(a(n)) = A292264(n). [A292944(n) + A292264(n) = n.]
--
A292383(a(n)) = A292274(n).
A292385(a(n)) = A292271(n). [A292271(n) + A292274(n) = n.]
--
A292941(a(n)) = A292942(n).
A292943(a(n)) = A292944(n).
A292945(a(n)) = A292946(n). [A292942(n) + A292944(n) + A292946(n) = n.]
--
A292253(a(n)) = A292254(n).
A292255(a(n)) = A292256(n). [A292944(n) + A292254(n) + A292256(n) = n.]
--
A279339(a(n)) = A279342(n).
a(A071574(n)) = A269847(n).
a(A279341(n)) = A279338(n).
a(A252756(n)) = A250246(n).
(1+A008836(a(n)))/2 = A059448(n).
(End)
From Antti Karttunen, Jul 26 2023: (Start)
For all n >= 0, a(A007283(n)) = A007283(n).
A001222(a(n)) = A290251(n).
(End)

Extensions

More terms computed and examples added by Antti Karttunen, Jun 20 2014

A048673 Permutation of natural numbers: a(n) = (A003961(n)+1) / 2 [where A003961(n) shifts the prime factorization of n one step towards larger primes].

Original entry on oeis.org

1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, 41, 10, 38, 12, 32, 28, 20, 15, 68, 25, 26, 63, 50, 16, 53, 19, 122, 33, 29, 39, 113, 21, 35, 43, 95, 22, 83, 24, 59, 88, 44, 27, 203, 61, 74, 48, 77, 30, 188, 46, 149, 58, 47, 31, 158, 34, 56, 138, 365, 60, 98, 36, 86, 73
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

Inverse of sequence A064216 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
From Antti Karttunen, Dec 20 2014: (Start)
Permutation of natural numbers obtained by replacing each prime divisor of n with the next prime and mapping the generated odd numbers back to all natural numbers by adding one and then halving.
Note: there is a 7-cycle almost right in the beginning: (6 8 14 17 10 11 7). (See also comments at A249821. This 7-cycle is endlessly copied in permutations like A250249/A250250.)
The only 3-cycle in range 1 .. 402653184 is (2821 3460 5639).
For 1- and 2-cycles, see A245449.
(End)
The first 5-cycle is (1410, 2783, 2451, 2703, 2803). - Robert Israel, Jan 15 2015
From Michel Marcus, Aug 09 2020: (Start)
(5194, 5356, 6149, 8186, 10709), (46048, 51339, 87915, 102673, 137205) and (175811, 200924, 226175, 246397, 267838) are other 5-cycles.
(10242, 20479, 21413, 29245, 30275, 40354, 48241) is another 7-cycle. (End)
From Antti Karttunen, Feb 10 2021: (Start)
Somewhat artificially, also this permutation can be represented as a binary tree. Each child to the left is obtained by multiplying the parent by 3 and subtracting one, while each child to the right is obtained by applying A253888 to the parent:
1
|
................../ \..................
2 3
5......../ \........4 8......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
14 13 11 7 23 9 17 18
41 10 38 12 32 28 20 15 68 25 26 63 50 16 53 19
etc.
Each node's (> 1) parent can be obtained with A253889. Sequences A292243, A292244, A292245 and A292246 are constructed from the residues (mod 3) of the vertices encountered on the path from n to the root (1).
(End)

Examples

			For n = 6, as 6 = 2 * 3 = prime(1) * prime(2), we have a(6) = ((prime(1+1) * prime(2+1))+1) / 2 = ((3 * 5)+1)/2 = 8.
For n = 12, as 12 = 2^2 * 3, we have a(12) = ((3^2 * 5) + 1)/2 = 23.
		

Crossrefs

Inverse: A064216.
Row 1 of A251722, Row 2 of A249822.
One more than A108228, half the terms of A243501.
Fixed points: A048674.
Positions of records: A029744, their values: A246360 (= A007051 interleaved with A057198).
Positions of subrecords: A247283, their values: A247284.
Cf. A246351 (Numbers n such that a(n) < n.)
Cf. A246352 (Numbers n such that a(n) >= n.)
Cf. A246281 (Numbers n such that a(n) <= n.)
Cf. A246282 (Numbers n such that a(n) > n.), A252742 (their char. function)
Cf. A246261 (Numbers n for which a(n) is odd.)
Cf. A246263 (Numbers n for which a(n) is even.)
Cf. A246260 (a(n) reduced modulo 2), A341345 (modulo 3), A341346, A292251 (3-adic valuation), A292252.
Cf. A246342 (Iterates starting from n=12.)
Cf. A246344 (Iterates starting from n=16.)
Cf. A245447 (This permutation "squared", a(a(n)).)
Other permutations whose formulas refer to this sequence: A122111, A243062, A243066, A243500, A243506, A244154, A244319, A245605, A245608, A245610, A245612, A245708, A246265, A246267, A246268, A246363, A249745, A249824, A249826, and also A183209, A254103 that are somewhat similar.
Cf. also prime-shift based binary trees A005940, A163511, A245612 and A244154.
Cf. A253888, A253889, A292243, A292244, A292245 and A292246 for other derived sequences.
Cf. A323893 (Dirichlet inverse), A323894 (sum with it), A336840 (inverse Möbius transform).

Programs

  • Haskell
    a048673 = (`div` 2) . (+ 1) . a045965
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Maple
    f:= proc(n)
    local F,q,t;
      F:= ifactors(n)[2];
      (1 + mul(nextprime(t[1])^t[2], t = F))/2
    end proc:
    seq(f(n),n=1..1000); # Robert Israel, Jan 15 2015
  • Mathematica
    Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n, {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2; \\ Antti Karttunen, Dec 20 2014
    
  • PARI
    A048673(n) = if(1==n,n,if(n%2,A253888(A048673((n-1)/2)),(3*A048673(n/2))-1)); \\ (Not practical, but demonstrates the construction as a binary tree). - Antti Karttunen, Feb 10 2021
    
  • Python
    from sympy import factorint, nextprime, prod
    def a(n):
        f = factorint(n)
        return 1 if n==1 else (1 + prod(nextprime(i)**f[i] for i in f))//2 # Indranil Ghosh, May 09 2017
  • Scheme
    (define (A048673 n) (/ (+ 1 (A003961 n)) 2)) ;; Antti Karttunen, Dec 20 2014
    

Formula

From Antti Karttunen, Dec 20 2014: (Start)
a(1) = 1; for n>1: If n = product_{k>=1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k>=1} (p_{k+1})^(c_k)).
a(n) = (A003961(n)+1) / 2.
a(n) = floor((A045965(n)+1)/2).
Other identities. For all n >= 1:
a(n) = A108228(n)+1.
a(n) = A243501(n)/2.
A108951(n) = A181812(a(n)).
a(A246263(A246268(n))) = 2*n.
As a composition of other permutations involving prime-shift operations:
a(n) = A243506(A122111(n)).
a(n) = A243066(A241909(n)).
a(n) = A241909(A243062(n)).
a(n) = A244154(A156552(n)).
a(n) = A245610(A244319(n)).
a(n) = A227413(A246363(n)).
a(n) = A245612(A243071(n)).
a(n) = A245608(A245605(n)).
a(n) = A245610(A244319(n)).
a(n) = A249745(A249824(n)).
For n >= 2, a(n) = A245708(1+A245605(n-1)).
(End)
From Antti Karttunen, Jan 17 2015: (Start)
We also have the following identities:
a(2n) = 3*a(n) - 1. [Thus a(2n+1) = 0 or 1 when reduced modulo 3. See A341346]
a(3n) = 5*a(n) - 2.
a(4n) = 9*a(n) - 4.
a(5n) = 7*a(n) - 3.
a(6n) = 15*a(n) - 7.
a(7n) = 11*a(n) - 5.
a(8n) = 27*a(n) - 13.
a(9n) = 25*a(n) - 12.
and in general:
a(x*y) = (A003961(x) * a(y)) - a(x) + 1, for all x, y >= 1.
(End)
From Antti Karttunen, Feb 10 2021: (Start)
For n > 1, a(2n) = A016789(a(n)-1), a(2n+1) = A253888(a(n)).
a(2^n) = A007051(n) for all n >= 0. [A property shared with A183209 and A254103].
(End)
a(n) = A003602(A003961(n)). - Antti Karttunen, Apr 20 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/4) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 1.0319981... , where nextprime is A151800. - Amiram Eldar, Jan 18 2023

Extensions

New name and crossrefs to derived sequences added by Antti Karttunen, Dec 20 2014

A249822 Square array of permutations: A(row,col) = A078898(A246278(row,col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 5, 3, 2, 1, 6, 4, 9, 3, 2, 1, 7, 8, 4, 14, 3, 2, 1, 8, 6, 12, 4, 28, 3, 2, 1, 9, 14, 5, 21, 4, 36, 3, 2, 1, 10, 13, 42, 5, 33, 4, 57, 3, 2, 1, 11, 11, 17, 92, 5, 45, 4, 67, 3, 2, 1, 12, 7, 19, 33, 305, 5, 63, 4, 93, 3, 2, 1, 13, 23, 6, 25, 39, 455, 5, 80, 4, 139, 3, 2, 1, 14, 9, 59, 6, 43, 61, 944, 5, 116, 4, 154, 3, 2, 1, 15, 17, 7, 144, 6, 52, 70, 1238, 5, 148, 4, 210, 3, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Examples

			The top left corner of the array:
1, 2, 3,  4,  5,   6,   7,    8,    9,   10,  11,   12,  13,   14,   15, ...
1, 2, 3,  5,  4,   8,   6,   14,   13,   11,   7,   23,   9,   17,   18, ...
1, 2, 3,  9,  4,  12,   5,   42,   17,   19,   6,   59,   7,   22,   26, ...
1, 2, 3, 14,  4,  21,   5,   92,   33,   25,   6,  144,   7,   32,   39, ...
1, 2, 3, 28,  4,  33,   5,  305,   39,   43,   6,  360,   7,   48,   50, ...
1, 2, 3, 36,  4,  45,   5,  455,   61,   52,   6,  597,   7,   63,   68, ...
1, 2, 3, 57,  4,  63,   5,  944,   70,   76,   6, 1053,   7,   95,   84, ...
1, 2, 3, 67,  4,  80,   5, 1238,   96,   99,   6, 1502,   7,  106,  121, ...
...
		

Crossrefs

Inverse permutations can be found from table A249821.
Row k+1 is a right-to-left composition of the first k rows of A251722.
Row 1: A000027 (an identity permutation), Row 2: A048673, Row 3: A249824, Row 4: A249826.
Column 4: A250474, Column 6: A250477, Column 8: A250478.

Programs

A273669 Decimal representation ends with either 2 or 9.

Original entry on oeis.org

2, 9, 12, 19, 22, 29, 32, 39, 42, 49, 52, 59, 62, 69, 72, 79, 82, 89, 92, 99, 102, 109, 112, 119, 122, 129, 132, 139, 142, 149, 152, 159, 162, 169, 172, 179, 182, 189, 192, 199, 202, 209, 212, 219, 222, 229, 232, 239, 242, 249, 252, 259, 262, 269, 272, 279, 282, 289, 292, 299, 302, 309, 312, 319, 322, 329, 332, 339
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2016

Keywords

Comments

Natural numbers not in A273664.

Crossrefs

Sequences A017293 and A017377 interleaved.
Cf. also A273664, A249824, A275716.

Programs

  • Mathematica
    Select[Range@ 340, MemberQ[{2, 9}, Mod[#, 10]] &] (* or *)
    Table[{10 n + 2, 10 n + 9}, {n, 0, 33}] // Flatten (* or *)
    CoefficientList[Series[(-5/(1 - x) + (11 - x)/(-1 + x)^2 - 2/(1 + x))/2, {x, 0, 67}], x] (* Michael De Vlieger, Aug 07 2016 *)
  • Scheme
    (define (A273669 n) (+ (* 10 (/ (+ (- n 2) (if (odd? n) 1 0)) 2)) (if (odd? n) 2 9)))

Formula

a(n) = 10*(((n-2)+A000035(n))/2) + 2 [when n is odd], or + 9 [when n is even].
For n >= 5, a(n) = 2*a(n-2) - a(n-4).
a(n) = A126760(A084967(n)).
a(n) = A249746((3*A249745(n))-1).
Other identities. For all n >= 1:
A084967(n) = 5*A007310(n) = A007310(a(n)).
G.f.: x*(x^2+7*x+2)/((x+1)*(x-1)^2).
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt((1+1/sqrt(5))/2)*phi^2*Pi/10 - log(phi)/(2*sqrt(5)) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

A249823 Permutation of natural numbers: a(n) = A246277(A084967(n)).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 4, 19, 23, 6, 29, 31, 37, 41, 9, 43, 10, 47, 53, 14, 59, 61, 67, 15, 71, 73, 22, 79, 21, 26, 83, 89, 97, 101, 103, 107, 34, 33, 25, 8, 109, 113, 39, 127, 131, 35, 38, 137, 139, 46, 149, 51, 151, 157, 49, 163, 12, 167, 173, 58, 55, 179, 181, 191, 193, 57, 62, 65, 197, 74, 69, 77, 199, 211, 223, 227, 82, 229, 233, 18
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A246277(A084967(n)).
As a composition of other permutations:
a(n) = A064216(A249745(n)).
a(n) = A249825(A250476(n)).

A249826 Permutation of natural numbers: a(n) = A078898(A003961(A003961(A003961(2*n)))).

Original entry on oeis.org

1, 2, 3, 14, 4, 21, 5, 92, 33, 25, 6, 144, 7, 32, 39, 641, 8, 226, 9, 170, 50, 36, 10, 1007, 46, 43, 355, 223, 11, 267, 12, 4482, 56, 55, 59, 1582, 13, 58, 68, 1190, 15, 350, 16, 249, 420, 70, 17, 7043, 78, 316, 86, 301, 18, 2485, 66, 1555, 91, 77, 19, 1869, 20, 81, 549, 31374, 80, 391, 22, 379, 109, 413, 23, 11068, 24, 88, 496, 406, 87, 473, 26, 8324, 3905, 99, 27
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A078898(A003961(A003961(A003961(2*n)))).
a(n) = A078898(A246278(4,n)).
As a composition of other permutations:
a(n) = A250476(A249824(n)).
a(n) = A250476(A249746(A048673(n))). [Composition of the first three rows of array A251722.]

A273664 a(n) = A249746(A032766(n)).

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 10, 17, 11, 13, 26, 14, 15, 16, 18, 41, 20, 31, 21, 23, 40, 24, 25, 27, 48, 28, 30, 45, 33, 63, 54, 34, 35, 36, 37, 38, 43, 68, 70, 57, 115, 44, 46, 85, 47, 50, 74, 73, 51, 53, 87, 55, 107, 56, 58, 97, 60, 180, 61, 64, 96, 83, 65, 66, 67, 71, 114, 101, 100, 75, 110, 136, 108, 76, 77, 78, 80, 124, 81
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2016

Keywords

Crossrefs

Cf. also A273669 (natural numbers not in this sequence).

Programs

  • Mathematica
    t = PositionIndex[FactorInteger[#][[1, 1]] & /@ Range[10^6]]; f[n_] := Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; Flatten@ Map[Position[Lookup[t, FactorInteger[#][[1, 1]]], #] &[f@ f[2 #]] &, Map[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@#, Last@#] &@ Transpose@ FactorInteger[2 # - 1] &, Floor[#/2] + # & /@ Range@ 80]] (* Michael De Vlieger, Aug 07 2016, Version 10 *)
  • Scheme
    (define (A273664 n) (A249746 (A032766 n)))

Formula

a(n) = A249746(A032766(n)).
a(n) = A249824(A254050(n)).
a(n) = A249746(A254049(A249745(n))).

A275716 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = A273669(a(n)), a(2n+1) = A273664(a(n)).

Original entry on oeis.org

1, 2, 9, 3, 42, 17, 12, 4, 209, 115, 82, 41, 59, 26, 19, 5, 1042, 801, 572, 444, 409, 283, 202, 57, 292, 180, 129, 48, 92, 31, 22, 6, 5209, 5603, 4002, 4881, 2859, 3106, 2219, 733, 2042, 1977, 1412, 620, 1009, 395, 282, 97, 1459, 1258, 899, 525, 642, 334, 239, 74, 459, 213, 152, 63, 109, 40, 29, 7, 26042, 39217
Offset: 0

Views

Author

Antti Karttunen, Aug 06 2016

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
This sequence can be represented as a binary tree. Each left hand child is obtained by applying A273669(n) when the parent contains n, and each right hand child is obtained by applying A273664 to the parent's contents:
1
|
...................2...................
9 3
42......../ \........17 12......../ \........4
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
209 115 82 41 59 26 19 5
1042 801 572 444 409 283 202 57 292 180 129 48 92 31 22 6
etc.

Crossrefs

Inverse: A275715.
Related or similar permutations: A163511, A249824, A245612.

Formula

a(0) = 1, a(1) = 2, a(2n) = A273669(a(n)), a(2n+1) = A273664(a(n)).
As a composition of other permutations:
a(n) = A249824(A163511(n)).
Showing 1-10 of 11 results. Next