Original entry on oeis.org
1, 2, 3, 4, 9, 5, 6, 12, 7, 8, 19, 10, 17, 42, 11, 13, 22, 26, 14, 29, 15, 16, 59, 18, 41, 32, 20, 31, 39, 21, 23, 92, 40, 24, 49, 25, 27, 82, 48, 28, 209, 30, 45, 52, 33, 63, 62, 54, 34, 109, 35, 36, 129, 37, 38, 69, 43, 68, 142, 70, 57, 72, 115, 44, 79, 46, 85, 292, 47, 50, 89, 74, 73, 202, 51, 53, 159, 87, 55, 99, 107, 56, 152, 58, 97, 192, 60
Offset: 1
a(5) = 9 because of the following. 2*A064216(5) = 2*4 = 8 = 2^3. We replace the prime factor 2 of 8 with the next prime 3 to get 3^3, then replace 3 with 5 to get 5^3 = 125. The smallest prime factor of 125 is 5. 125 is the 9th term of A084967: 5, 25, 35, 55, 65, 85, 95, 115, 125, ..., thus a(5) = 9.
-
t = PositionIndex[FactorInteger[#][[1, 1]] & /@ Range[10^6]]; f[n_] := Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; Flatten@ Map[Position[Lookup[t, FactorInteger[#][[1, 1]] ], #] &[f@ f[2 #]] &, Table[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1], {n, 87}]] (* Michael De Vlieger, Jul 25 2016, Version 10 *)
-
(define (A249746 n) (define (Ainv_of_A007310off0 n) (+ (* 2 (floor->exact (/ n 6))) (/ (- (modulo n 6) 1) 4))) (+ 1 (Ainv_of_A007310off0 (A003961 (+ n n -1)))))
A250475
Permutation of natural numbers: a(n) = A249824(A249825(n)).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 9, 16, 18, 20, 21, 23, 24, 12, 25, 27, 28, 19, 30, 33, 34, 35, 36, 37, 22, 17, 38, 43, 29, 44, 46, 26, 47, 50, 51, 32, 53, 55, 41, 56, 58, 60, 31, 61, 64, 65, 66, 39, 40, 67, 49, 48, 71, 75, 76, 77, 78, 80, 63, 81, 45, 84, 52, 86, 88, 90, 91, 93, 94, 62, 57, 95, 70, 69, 98, 103, 104, 105, 54, 74, 72, 106, 111, 68, 42
Offset: 1
A163511
a(0)=1. a(n) = p(A000120(n)) * Product_{m=1..A000120(n)} p(m)^A163510(n,m), where p(m) is the m-th prime.
Original entry on oeis.org
1, 2, 4, 3, 8, 9, 6, 5, 16, 27, 18, 25, 12, 15, 10, 7, 32, 81, 54, 125, 36, 75, 50, 49, 24, 45, 30, 35, 20, 21, 14, 11, 64, 243, 162, 625, 108, 375, 250, 343, 72, 225, 150, 245, 100, 147, 98, 121, 48, 135, 90, 175, 60, 105, 70, 77, 40, 63, 42, 55, 28, 33, 22, 13, 128
Offset: 0
For n=3, whose binary representation is "11", we have A000120(3)=2, with A163510(3,1) = A163510(3,2) = 0, thus a(3) = p(2) * p(1)^0 * p(2)^0 = 3*1*1 = 3.
For n=9, "1001" in binary, we have A000120(9)=2, with A163510(9,1) = 0 and A163510(9,2) = 2, thus a(9) = p(2) * p(1)^0 * p(2)^2 = 3*1*9 = 27.
For n=10, "1010" in binary, we have A000120(10)=2, with A163510(10,1) = 1 and A163510(10,2) = 1, thus a(10) = p(2) * p(1)^1 * p(2)^1 = 3*2*3 = 18.
For n=15, "1111" in binary, we have A000120(15)=4, with A163510(15,1) = A163510(15,2) = A163510(15,3) = A163510(15,4) = 0, thus a(15) = p(4) * p(1)^0 * p(2)^0 * p(3)^0 * p(4)^0 = 7*1*1*1*1 = 7.
[1], [2], [1,1], [3], [1,2], [2,1] ... -> [1], [2], [3], [1,2], ... -> [0], [1], [2], [0,1], ... -> 2^0, 2^1, 2^2, 2^0*3^1, ... = 1, 2, 4, 3, ... - _Lorenzo Sauras Altuzarra_, Nov 28 2020
Cf.
A000040,
A000120,
A000225,
A000788,
A003961,
A007814,
A054429,
A055396,
A064216,
A135523,
A161992,
A163510,
A245605,
A245612,
A246375,
A246378,
A246681,
A161511,
A228351,
A243499,
A243503,
A243504,
A269854,
A280873,
A285727,
A290251,
A293437,
A337909.
Cf.
A007283 (known positions where a(n)=n),
A029747,
A029748,
A364255 [= gcd(n,a(n))],
A364258 [= a(n)-n],
A364287 (where a(n) < n),
A364292 (where a(n) <= n),
A364494 (where n|a(n)),
A364496 (where a(n)|n),
A364963,
A364297.
-
f[n_] := Reverse@ Map[Ceiling[(Length@ # - 1)/2] &, DeleteCases[Split@ Join[Riffle[IntegerDigits[n, 2], 0], {0}], {k__} /; k == 1]]; {1}~Join~
Table[Function[t, Prime[t] Product[Prime[m]^(f[n][[m]]), {m, t}]][DigitCount[n, 2, 1]], {n, 120}] (* Michael De Vlieger, Jul 25 2016 *)
-
from sympy import prime
def A163511(n):
if n:
k, c, m = n, 0, 1
while k:
c += 1
m *= prime(c)**(s:=(~k&k-1).bit_length())
k >>= s+1
return m*prime(c)
return 1 # Chai Wah Wu, Jul 17 2023
A048673
Permutation of natural numbers: a(n) = (A003961(n)+1) / 2 [where A003961(n) shifts the prime factorization of n one step towards larger primes].
Original entry on oeis.org
1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, 41, 10, 38, 12, 32, 28, 20, 15, 68, 25, 26, 63, 50, 16, 53, 19, 122, 33, 29, 39, 113, 21, 35, 43, 95, 22, 83, 24, 59, 88, 44, 27, 203, 61, 74, 48, 77, 30, 188, 46, 149, 58, 47, 31, 158, 34, 56, 138, 365, 60, 98, 36, 86, 73
Offset: 1
For n = 6, as 6 = 2 * 3 = prime(1) * prime(2), we have a(6) = ((prime(1+1) * prime(2+1))+1) / 2 = ((3 * 5)+1)/2 = 8.
For n = 12, as 12 = 2^2 * 3, we have a(12) = ((3^2 * 5) + 1)/2 = 23.
Cf.
A246351 (Numbers n such that a(n) < n.)
Cf.
A246352 (Numbers n such that a(n) >= n.)
Cf.
A246281 (Numbers n such that a(n) <= n.)
Cf.
A246282 (Numbers n such that a(n) > n.),
A252742 (their char. function)
Cf.
A246261 (Numbers n for which a(n) is odd.)
Cf.
A246263 (Numbers n for which a(n) is even.)
Cf.
A246342 (Iterates starting from n=12.)
Cf.
A246344 (Iterates starting from n=16.)
Cf.
A245447 (This permutation "squared", a(a(n)).)
Other permutations whose formulas refer to this sequence:
A122111,
A243062,
A243066,
A243500,
A243506,
A244154,
A244319,
A245605,
A245608,
A245610,
A245612,
A245708,
A246265,
A246267,
A246268,
A246363,
A249745,
A249824,
A249826, and also
A183209,
A254103 that are somewhat similar.
-
a048673 = (`div` 2) . (+ 1) . a045965
-- Reinhard Zumkeller, Jul 12 2012
-
f:= proc(n)
local F,q,t;
F:= ifactors(n)[2];
(1 + mul(nextprime(t[1])^t[2], t = F))/2
end proc:
seq(f(n),n=1..1000); # Robert Israel, Jan 15 2015
-
Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n, {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
-
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
A048673(n) = (A003961(n)+1)/2; \\ Antti Karttunen, Dec 20 2014
-
A048673(n) = if(1==n,n,if(n%2,A253888(A048673((n-1)/2)),(3*A048673(n/2))-1)); \\ (Not practical, but demonstrates the construction as a binary tree). - Antti Karttunen, Feb 10 2021
-
from sympy import factorint, nextprime, prod
def a(n):
f = factorint(n)
return 1 if n==1 else (1 + prod(nextprime(i)**f[i] for i in f))//2 # Indranil Ghosh, May 09 2017
-
(define (A048673 n) (/ (+ 1 (A003961 n)) 2)) ;; Antti Karttunen, Dec 20 2014
New name and crossrefs to derived sequences added by
Antti Karttunen, Dec 20 2014
A249822
Square array of permutations: A(row,col) = A078898(A246278(row,col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 5, 3, 2, 1, 6, 4, 9, 3, 2, 1, 7, 8, 4, 14, 3, 2, 1, 8, 6, 12, 4, 28, 3, 2, 1, 9, 14, 5, 21, 4, 36, 3, 2, 1, 10, 13, 42, 5, 33, 4, 57, 3, 2, 1, 11, 11, 17, 92, 5, 45, 4, 67, 3, 2, 1, 12, 7, 19, 33, 305, 5, 63, 4, 93, 3, 2, 1, 13, 23, 6, 25, 39, 455, 5, 80, 4, 139, 3, 2, 1, 14, 9, 59, 6, 43, 61, 944, 5, 116, 4, 154, 3, 2, 1, 15, 17, 7, 144, 6, 52, 70, 1238, 5, 148, 4, 210, 3, 2, 1
Offset: 1
The top left corner of the array:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, ...
1, 2, 3, 9, 4, 12, 5, 42, 17, 19, 6, 59, 7, 22, 26, ...
1, 2, 3, 14, 4, 21, 5, 92, 33, 25, 6, 144, 7, 32, 39, ...
1, 2, 3, 28, 4, 33, 5, 305, 39, 43, 6, 360, 7, 48, 50, ...
1, 2, 3, 36, 4, 45, 5, 455, 61, 52, 6, 597, 7, 63, 68, ...
1, 2, 3, 57, 4, 63, 5, 944, 70, 76, 6, 1053, 7, 95, 84, ...
1, 2, 3, 67, 4, 80, 5, 1238, 96, 99, 6, 1502, 7, 106, 121, ...
...
Inverse permutations can be found from table
A249821.
Row k+1 is a right-to-left composition of the first k rows of
A251722.
A273669
Decimal representation ends with either 2 or 9.
Original entry on oeis.org
2, 9, 12, 19, 22, 29, 32, 39, 42, 49, 52, 59, 62, 69, 72, 79, 82, 89, 92, 99, 102, 109, 112, 119, 122, 129, 132, 139, 142, 149, 152, 159, 162, 169, 172, 179, 182, 189, 192, 199, 202, 209, 212, 219, 222, 229, 232, 239, 242, 249, 252, 259, 262, 269, 272, 279, 282, 289, 292, 299, 302, 309, 312, 319, 322, 329, 332, 339
Offset: 1
-
Select[Range@ 340, MemberQ[{2, 9}, Mod[#, 10]] &] (* or *)
Table[{10 n + 2, 10 n + 9}, {n, 0, 33}] // Flatten (* or *)
CoefficientList[Series[(-5/(1 - x) + (11 - x)/(-1 + x)^2 - 2/(1 + x))/2, {x, 0, 67}], x] (* Michael De Vlieger, Aug 07 2016 *)
-
(define (A273669 n) (+ (* 10 (/ (+ (- n 2) (if (odd? n) 1 0)) 2)) (if (odd? n) 2 9)))
A249823
Permutation of natural numbers: a(n) = A246277(A084967(n)).
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 13, 17, 4, 19, 23, 6, 29, 31, 37, 41, 9, 43, 10, 47, 53, 14, 59, 61, 67, 15, 71, 73, 22, 79, 21, 26, 83, 89, 97, 101, 103, 107, 34, 33, 25, 8, 109, 113, 39, 127, 131, 35, 38, 137, 139, 46, 149, 51, 151, 157, 49, 163, 12, 167, 173, 58, 55, 179, 181, 191, 193, 57, 62, 65, 197, 74, 69, 77, 199, 211, 223, 227, 82, 229, 233, 18
Offset: 1
Original entry on oeis.org
1, 2, 3, 14, 4, 21, 5, 92, 33, 25, 6, 144, 7, 32, 39, 641, 8, 226, 9, 170, 50, 36, 10, 1007, 46, 43, 355, 223, 11, 267, 12, 4482, 56, 55, 59, 1582, 13, 58, 68, 1190, 15, 350, 16, 249, 420, 70, 17, 7043, 78, 316, 86, 301, 18, 2485, 66, 1555, 91, 77, 19, 1869, 20, 81, 549, 31374, 80, 391, 22, 379, 109, 413, 23, 11068, 24, 88, 496, 406, 87, 473, 26, 8324, 3905, 99, 27
Offset: 1
Original entry on oeis.org
1, 3, 4, 5, 6, 7, 8, 10, 17, 11, 13, 26, 14, 15, 16, 18, 41, 20, 31, 21, 23, 40, 24, 25, 27, 48, 28, 30, 45, 33, 63, 54, 34, 35, 36, 37, 38, 43, 68, 70, 57, 115, 44, 46, 85, 47, 50, 74, 73, 51, 53, 87, 55, 107, 56, 58, 97, 60, 180, 61, 64, 96, 83, 65, 66, 67, 71, 114, 101, 100, 75, 110, 136, 108, 76, 77, 78, 80, 124, 81
Offset: 1
Cf. also
A273669 (natural numbers not in this sequence).
-
t = PositionIndex[FactorInteger[#][[1, 1]] & /@ Range[10^6]]; f[n_] := Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; Flatten@ Map[Position[Lookup[t, FactorInteger[#][[1, 1]]], #] &[f@ f[2 #]] &, Map[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@#, Last@#] &@ Transpose@ FactorInteger[2 # - 1] &, Floor[#/2] + # & /@ Range@ 80]] (* Michael De Vlieger, Aug 07 2016, Version 10 *)
-
(define (A273664 n) (A249746 (A032766 n)))
A275716
Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = A273669(a(n)), a(2n+1) = A273664(a(n)).
Original entry on oeis.org
1, 2, 9, 3, 42, 17, 12, 4, 209, 115, 82, 41, 59, 26, 19, 5, 1042, 801, 572, 444, 409, 283, 202, 57, 292, 180, 129, 48, 92, 31, 22, 6, 5209, 5603, 4002, 4881, 2859, 3106, 2219, 733, 2042, 1977, 1412, 620, 1009, 395, 282, 97, 1459, 1258, 899, 525, 642, 334, 239, 74, 459, 213, 152, 63, 109, 40, 29, 7, 26042, 39217
Offset: 0
Showing 1-10 of 11 results.
Comments