cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A251721 Square array of permutations: A(row,col) = A249822(row, A249821(row+1, col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 3, 2, 1, 4, 4, 3, 2, 1, 7, 6, 4, 3, 2, 1, 11, 7, 5, 4, 3, 2, 1, 6, 9, 6, 5, 4, 3, 2, 1, 13, 10, 7, 6, 5, 4, 3, 2, 1, 17, 5, 8, 7, 6, 5, 4, 3, 2, 1, 10, 12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 19, 15, 11, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 13, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 8, 16, 14, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 23, 19, 15, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2014

Keywords

Comments

These are the "first differences" between permutations of array A249821, in a sense that by composing the first k rows of this array [from left to right, as in a(n) = row_1(row_2(...(row_k(n))))], one obtains row k+1 of A249821.
On row n, the first A250473(n) terms are fixed, and the first non-fixed term comes at A250474(n).

Examples

			The top left corner of the array:
1, 2, 3, 5, 4, 7, 11, 6, 13, 17, 10, 19, 9, 8, 23, 29, 14, 15, 31, 22, ...
1, 2, 3, 4, 6, 7, 9, 10, 5, 12, 15, 8, 16, 19, 21, 22, 13, 24, 11, 27, ...
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 9, 16, 18, 20, 21, 23, 24, ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, ...
...
		

Crossrefs

Inverse permutations can be found from array A251722.
Row 1: A064216, Row 2: A249745, Row 3: A250475.

Programs

Formula

A(row,col) = A249822(row, A249821(row+1, col)).
A(row,col) = A078898(A246278(row, A246277(A083221(row+1, col)))).

A251722 Square array of permutations: A(row,col) = A249822(row+1, A249821(row, col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 3, 2, 1, 4, 4, 3, 2, 1, 8, 9, 4, 3, 2, 1, 6, 5, 5, 4, 3, 2, 1, 14, 6, 6, 5, 4, 3, 2, 1, 13, 12, 7, 6, 5, 4, 3, 2, 1, 11, 7, 8, 7, 6, 5, 4, 3, 2, 1, 7, 8, 14, 8, 7, 6, 5, 4, 3, 2, 1, 23, 19, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 10, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 17, 17, 21, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 18, 42, 11, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2014

Keywords

Comments

These are the "first differences" between permutations of array A249822, in a sense that by composing the first k rows of this array [from right to left, as in a(n) = row_k(...(row_2(row_1(n))))], one obtains row k+1 of A249822.
On row n the first non-fixed term is A250474(n+1) at position A250474(n), i.e., on row 1 it is 5 at n=4, on row 2 it is 9 at n=5, on row 3 it is 14 at n=9, etc. All the previous A250473(n) terms are fixed.

Examples

			The top left corner of the array:
1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, 41, 10, 38, 12, 32, ...
1, 2, 3, 4, 9, 5, 6, 12, 7, 8, 19, 10, 17, 42, 11, 13, 22, 26, 14, 29, ...
1, 2, 3, 4, 5, 6, 7, 8, 14, 9, 10, 21, 11, 12, 13, 15, 33, 16, 25, 17, ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 28, 14, 15, 16, 17, 18, 19, ...
...
		

Crossrefs

Inverse permutations can be found from array A251721.
Row 1: A048673, Row 2: A249746, Row 3: A250476.

Programs

Formula

A(row,col) = A249822(row+1, A249821(row, col)).
A(row,col) = A078898(A246278(row+1, A246277(A083221(row, col)))).

A048673 Permutation of natural numbers: a(n) = (A003961(n)+1) / 2 [where A003961(n) shifts the prime factorization of n one step towards larger primes].

Original entry on oeis.org

1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, 41, 10, 38, 12, 32, 28, 20, 15, 68, 25, 26, 63, 50, 16, 53, 19, 122, 33, 29, 39, 113, 21, 35, 43, 95, 22, 83, 24, 59, 88, 44, 27, 203, 61, 74, 48, 77, 30, 188, 46, 149, 58, 47, 31, 158, 34, 56, 138, 365, 60, 98, 36, 86, 73
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

Inverse of sequence A064216 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
From Antti Karttunen, Dec 20 2014: (Start)
Permutation of natural numbers obtained by replacing each prime divisor of n with the next prime and mapping the generated odd numbers back to all natural numbers by adding one and then halving.
Note: there is a 7-cycle almost right in the beginning: (6 8 14 17 10 11 7). (See also comments at A249821. This 7-cycle is endlessly copied in permutations like A250249/A250250.)
The only 3-cycle in range 1 .. 402653184 is (2821 3460 5639).
For 1- and 2-cycles, see A245449.
(End)
The first 5-cycle is (1410, 2783, 2451, 2703, 2803). - Robert Israel, Jan 15 2015
From Michel Marcus, Aug 09 2020: (Start)
(5194, 5356, 6149, 8186, 10709), (46048, 51339, 87915, 102673, 137205) and (175811, 200924, 226175, 246397, 267838) are other 5-cycles.
(10242, 20479, 21413, 29245, 30275, 40354, 48241) is another 7-cycle. (End)
From Antti Karttunen, Feb 10 2021: (Start)
Somewhat artificially, also this permutation can be represented as a binary tree. Each child to the left is obtained by multiplying the parent by 3 and subtracting one, while each child to the right is obtained by applying A253888 to the parent:
1
|
................../ \..................
2 3
5......../ \........4 8......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
14 13 11 7 23 9 17 18
41 10 38 12 32 28 20 15 68 25 26 63 50 16 53 19
etc.
Each node's (> 1) parent can be obtained with A253889. Sequences A292243, A292244, A292245 and A292246 are constructed from the residues (mod 3) of the vertices encountered on the path from n to the root (1).
(End)

Examples

			For n = 6, as 6 = 2 * 3 = prime(1) * prime(2), we have a(6) = ((prime(1+1) * prime(2+1))+1) / 2 = ((3 * 5)+1)/2 = 8.
For n = 12, as 12 = 2^2 * 3, we have a(12) = ((3^2 * 5) + 1)/2 = 23.
		

Crossrefs

Inverse: A064216.
Row 1 of A251722, Row 2 of A249822.
One more than A108228, half the terms of A243501.
Fixed points: A048674.
Positions of records: A029744, their values: A246360 (= A007051 interleaved with A057198).
Positions of subrecords: A247283, their values: A247284.
Cf. A246351 (Numbers n such that a(n) < n.)
Cf. A246352 (Numbers n such that a(n) >= n.)
Cf. A246281 (Numbers n such that a(n) <= n.)
Cf. A246282 (Numbers n such that a(n) > n.), A252742 (their char. function)
Cf. A246261 (Numbers n for which a(n) is odd.)
Cf. A246263 (Numbers n for which a(n) is even.)
Cf. A246260 (a(n) reduced modulo 2), A341345 (modulo 3), A341346, A292251 (3-adic valuation), A292252.
Cf. A246342 (Iterates starting from n=12.)
Cf. A246344 (Iterates starting from n=16.)
Cf. A245447 (This permutation "squared", a(a(n)).)
Other permutations whose formulas refer to this sequence: A122111, A243062, A243066, A243500, A243506, A244154, A244319, A245605, A245608, A245610, A245612, A245708, A246265, A246267, A246268, A246363, A249745, A249824, A249826, and also A183209, A254103 that are somewhat similar.
Cf. also prime-shift based binary trees A005940, A163511, A245612 and A244154.
Cf. A253888, A253889, A292243, A292244, A292245 and A292246 for other derived sequences.
Cf. A323893 (Dirichlet inverse), A323894 (sum with it), A336840 (inverse Möbius transform).

Programs

  • Haskell
    a048673 = (`div` 2) . (+ 1) . a045965
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Maple
    f:= proc(n)
    local F,q,t;
      F:= ifactors(n)[2];
      (1 + mul(nextprime(t[1])^t[2], t = F))/2
    end proc:
    seq(f(n),n=1..1000); # Robert Israel, Jan 15 2015
  • Mathematica
    Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n, {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2; \\ Antti Karttunen, Dec 20 2014
    
  • PARI
    A048673(n) = if(1==n,n,if(n%2,A253888(A048673((n-1)/2)),(3*A048673(n/2))-1)); \\ (Not practical, but demonstrates the construction as a binary tree). - Antti Karttunen, Feb 10 2021
    
  • Python
    from sympy import factorint, nextprime, prod
    def a(n):
        f = factorint(n)
        return 1 if n==1 else (1 + prod(nextprime(i)**f[i] for i in f))//2 # Indranil Ghosh, May 09 2017
  • Scheme
    (define (A048673 n) (/ (+ 1 (A003961 n)) 2)) ;; Antti Karttunen, Dec 20 2014
    

Formula

From Antti Karttunen, Dec 20 2014: (Start)
a(1) = 1; for n>1: If n = product_{k>=1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k>=1} (p_{k+1})^(c_k)).
a(n) = (A003961(n)+1) / 2.
a(n) = floor((A045965(n)+1)/2).
Other identities. For all n >= 1:
a(n) = A108228(n)+1.
a(n) = A243501(n)/2.
A108951(n) = A181812(a(n)).
a(A246263(A246268(n))) = 2*n.
As a composition of other permutations involving prime-shift operations:
a(n) = A243506(A122111(n)).
a(n) = A243066(A241909(n)).
a(n) = A241909(A243062(n)).
a(n) = A244154(A156552(n)).
a(n) = A245610(A244319(n)).
a(n) = A227413(A246363(n)).
a(n) = A245612(A243071(n)).
a(n) = A245608(A245605(n)).
a(n) = A245610(A244319(n)).
a(n) = A249745(A249824(n)).
For n >= 2, a(n) = A245708(1+A245605(n-1)).
(End)
From Antti Karttunen, Jan 17 2015: (Start)
We also have the following identities:
a(2n) = 3*a(n) - 1. [Thus a(2n+1) = 0 or 1 when reduced modulo 3. See A341346]
a(3n) = 5*a(n) - 2.
a(4n) = 9*a(n) - 4.
a(5n) = 7*a(n) - 3.
a(6n) = 15*a(n) - 7.
a(7n) = 11*a(n) - 5.
a(8n) = 27*a(n) - 13.
a(9n) = 25*a(n) - 12.
and in general:
a(x*y) = (A003961(x) * a(y)) - a(x) + 1, for all x, y >= 1.
(End)
From Antti Karttunen, Feb 10 2021: (Start)
For n > 1, a(2n) = A016789(a(n)-1), a(2n+1) = A253888(a(n)).
a(2^n) = A007051(n) for all n >= 0. [A property shared with A183209 and A254103].
(End)
a(n) = A003602(A003961(n)). - Antti Karttunen, Apr 20 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/4) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 1.0319981... , where nextprime is A151800. - Amiram Eldar, Jan 18 2023

Extensions

New name and crossrefs to derived sequences added by Antti Karttunen, Dec 20 2014

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A249818 Permutation of natural numbers: a(1) = 1, a(n) = A246278(A055396(n),A078898(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27, 22, 23, 24, 25, 26, 21, 28, 29, 30, 31, 32, 45, 34, 35, 36, 37, 38, 33, 40, 41, 42, 43, 44, 81, 46, 47, 48, 49, 50, 75, 52, 53, 54, 125, 56, 63, 58, 59, 60, 61, 62, 39, 64, 55, 66, 67, 68, 135, 70, 71, 72, 73, 74, 51, 76, 77, 78, 79, 80, 99, 82, 83, 84, 175, 86, 105
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

a(n) tells which number in square array A246278 is at the same position where n is in array A083221, the sieve of Eratosthenes. As both arrays have even numbers as their topmost row and primes as their leftmost column, both sequences are among the fixed points of this permutation.
Equally: a(n) tells which number in array A246279 is at the same position where n is in the array A083140, as they are the transposes of above two arrays.

Crossrefs

Inverse: A249817.
There are three different "deep" versions of this permutation, recursing on values of A055396(n) and/or A078898(n), namely: A250246, A250248 and A250250.
Other similar or related permutations: A249816.
Differs from its inverse A249817 for the first time at n=33, where a(33) = 45, while A249817(33) = 39.

Programs

  • Mathematica
    lim = 87; a003961[p_?PrimeQ] := a003961[p] = Prime[PrimePi@ p + 1]; a003961[1] = 1; a003961[n_] :=  a003961[n] = Times @@ (a003961[First@ #]^Last@ # &) /@ FactorInteger@ n; a055396[n_] := PrimePi[FactorInteger[n][[1, 1]]]; a078898 = Block[{nn = 90, spfs}, spfs = Table[FactorInteger[n][[1, 1]], {n, nn}]; Table[Count[Take[spfs, i], spfs[[i]]], {i, nn}]]; a246278 = NestList[Map[a003961, #] &, Table[2 k, {k, lim}], lim]; Table[a246278[[a055396@ n, a078898[[n]]]], {n, 2, lim}]
    (* Michael De Vlieger, Jan 04 2016, after Harvey P. Dale at A055396 and A078898 *)

Formula

a(1) = 1, a(n) = A246278(A055396(n), A078898(n)).
a(1) = 1, a(n) = A246278(A055396(n), A249822(A055396(n), A246277(n))).
As a composition of other permutations:
a(1) = 1, and for n > 1, a(n) = 1 + A249816(n-1).
Other identities. For all n >= 1:
a(A005843(n)) = A005843(n) and a(A000040(n)) = A000040(n). [Fixes even numbers and primes, among other numbers. Cf. comments above].
A020639(a(n)) = A020639(n) and A055396(a(n)) = A055396(n). [Preserves the smallest prime factor of n].

A249821 Square array of permutations: A(row,col) = A246277(A083221(row,col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... .

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 5, 3, 2, 1, 6, 4, 5, 3, 2, 1, 7, 7, 7, 5, 3, 2, 1, 8, 11, 11, 7, 5, 3, 2, 1, 9, 6, 13, 11, 7, 5, 3, 2, 1, 10, 13, 17, 13, 11, 7, 5, 3, 2, 1, 11, 17, 4, 17, 13, 11, 7, 5, 3, 2, 1, 12, 10, 19, 19, 17, 13, 11, 7, 5, 3, 2, 1, 13, 19, 23, 23, 19, 17, 13, 11, 7, 5, 3, 2, 1, 14, 9, 6, 29, 23, 19, 17, 13, 11, 7, 5, 3, 2, 1, 15, 8, 29, 31, 29, 23, 19, 17, 13, 11, 7, 5, 3, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

Permutation A249817 preserves the smallest prime factor of n, i.e., A055396(A249817(n)) = A055396(n), in other words, keeps all the terms that appear on any row of A246278 on the same row of A083221. Permutations in this table are induced by changes that A249817 does onto each row of the latter table, thus permutation on row r of this table can be used to sort row r of A246278 into ascending order. I.e., A246278(r, A(r,c)) = A083221(r,c) [the corresponding row in the Sieve of Eratosthenes, where each row appears in monotone order].
The multi-set of cycle-sizes of permutation A249817 is a disjoint union of cycle-sizes of all permutations in this array. For example, A249817 has a 7-cycle (33 39 63 57 99 81 45) which originates from the 7-cycle (6 7 11 10 17 14 8) of A064216, which occurs as the second row in this table.
On each row, 4 is the first composite number (and the first term less than previous, apart from row 1), and on row n it occurs in position A250474(n). This follows because A001222(A246277(n)) = A001222(n)-1 and because on each row of A083221 (see A083140) all terms between the square of prime (second term on each row) and the first cube (of the same prime, this cube mapping in this array to 4) are nonsquare semiprimes (A006881), this implies that the corresponding terms in this array must be primes.
Also, as the smaller prime factor of the terms on row n of A083221 is constant, A020639(n), and for all i < j: A246277(p_{i} * p_{j}) < A246277(p_i * p_{j+1}), the primes on any row appear in monotone order.

Examples

			The top left corner of the array:
1, 2, 3, 4, 5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...
1, 2, 3, 5, 4,  7, 11,  6, 13, 17, 10, 19,  9,  8, 23, 29, 14, 15, 31, ...
1, 2, 3, 5, 7, 11, 13, 17,  4, 19, 23,  6, 29, 31, 37, 41,  9, 43, 10, ...
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,  4, 41, 43, 47, 53, 59, ...
...
		

Crossrefs

Inverse permutations can be found from table A249822.
Row k+1 is a left-to-right composition of the first k rows of A251721.
Row 1: A000027 (an identity permutation), Row 2: A064216, Row 3: A249823, Row 4: A249825.
The initial growing part of each row converges towards A008578.

Programs

Formula

A(row,col) = A246277(A083221(row,col)).
A001222(A(row,col)) = A001222(A083221(row,col)) - 1. [This follows directly from the properties of A246277.]

A250474 Number of times prime(n) occurs as the least prime factor among numbers 1 .. prime(n)^3: a(n) = A078898(A030078(n)).

Original entry on oeis.org

4, 5, 9, 14, 28, 36, 57, 67, 93, 139, 154, 210, 253, 272, 317, 396, 473, 504, 593, 658, 687, 792, 866, 979, 1141, 1229, 1270, 1356, 1397, 1496, 1849, 1947, 2111, 2159, 2457, 2514, 2695, 2880, 3007, 3204, 3398, 3473, 3828, 3904, 4047, 4121, 4583, 5061, 5228, 5309, 5474, 5743, 5832, 6269, 6543, 6816, 7107, 7197, 7488, 7686, 7784, 8295, 9029, 9248, 9354, 9568, 10351
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2014

Keywords

Comments

Position of the first composite number (which is always 4) on row n of A249821. The fourth column of A249822.
Position of the first nonfixed term on row n of arrays of permutations A251721 and A251722.
According to the definition, this is the number of multiples of prime(n) below prime(n)^3 (and thus, the number of numbers below prime(n)^2) which do not have a smaller factor than prime(n). That is, the numbers remaining below prime(n)^2 after deleting all multiples of primes less than prime(n), as is done by applying the first n-1 steps of the sieve of Eratosthenes (when the first step is elimination of multiples of 2). This explains that the first differences are a(n+1)-a(n) = A050216(n)-1 for n>1, and a(n) = A054272(n)+2. - M. F. Hasler, Dec 31 2014

Examples

			prime(1) = 2 occurs as the least prime factor in range [1,8] for four times (all even numbers <= 8), thus a(1) = 4.
prime(2) = 3 occurs as the least prime factor in range [1,27] for five times (when n is: 3, 9, 15, 21, 27), thus a(2) = 5.
		

Crossrefs

One more than A250473. Two more than A054272.
Column 4 of A249822.
Cf. also A250477 (column 6), A250478 (column 8).

Programs

  • Mathematica
    f[n_] := Count[Range[Prime[n]^3], x_ /; Min[First /@ FactorInteger[x]] == Prime@ n]; Array[f, 16] (* Michael De Vlieger, Mar 30 2015 *)
  • PARI
    A250474(n) = 3 + primepi(prime(n)^2) - n; \\ Fast implementation.
    for(n=1, 5001, write("b250474.txt", n, " ", A250474(n)));
    \\ The following program reflects the given sum formula, but is far from the optimal solution:
    allocatemem(234567890);
    A002110(n) = prod(i=1, n, prime(i));
    A020639(n) = if(1==n,n,vecmin(factor(n)[,1]));
    A055396(n) = if(1==n,0,primepi(A020639(n)));
    A250474(n) = { my(p2 = prime(n)^2); sumdiv(A002110(n-1), d, moebius(d)*(p2\d)); };
    for(n=1, 23, print1(A250474(n),", "));
    
  • Scheme
    (define (A250474 n) (let loop ((k 2)) (if (not (prime? (A249821bi n k))) k (loop (+ k 1))))) ;; This is even slower. Code for A249821bi given in A249821.

Formula

a(n) = 3 + A000879(n) - n = A054272(n) + 2 = A250473(n) + 1.
a(n) = A078898(A030078(n)).
a(1) = 1, a(n) = Sum_{d|A002110(n-1)} moebius(d)*floor(prime(n)^2/d). [Follows when A030078(n), prime(n)^3 is substituted to the similar formula given for A078898(n). Here A002110(n) gives the product of the first n primes. Because the latter is always squarefree, one could use also Liouville's lambda (A008836) instead of Moebius mu (A008683)].
Other identities. For all n >= 1:
A249821(n, a(n)) = 4.

A249824 Permutation of natural numbers: a(n) = A078898(A003961(A003961(2*n))).

Original entry on oeis.org

1, 2, 3, 9, 4, 12, 5, 42, 17, 19, 6, 59, 7, 22, 26, 209, 8, 82, 10, 92, 31, 29, 11, 292, 41, 32, 115, 109, 13, 129, 14, 1042, 40, 39, 48, 409, 15, 49, 45, 459, 16, 152, 18, 142, 180, 52, 20, 1459, 57, 202, 54, 159, 21, 572, 63, 542, 68, 62, 23, 642, 24, 69, 213
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Examples

			a(4) = 9 because of the following. 2n = 2*4 = 8 = 2^3. We replace the prime factor 2 of 8 with the next prime 3 to get 3^3, then replace 3 with 5 to get 5^3 = 125. The smallest prime factor of 125 is 5. 125 is the 9th term of A084967: 5, 25, 35, 55, 65, 85, 95, 115, 125, ..., thus a(4) = 9.
		

Crossrefs

Programs

  • Mathematica
    t = PositionIndex[FactorInteger[#][[1, 1]] & /@ Range[10^4]]; f[n_] := Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; Flatten@ Table[Position[Lookup[t, FactorInteger[#][[1, 1]] ], #] &[f@ f[2 n]], {n, 120}] (* Michael De Vlieger, Jul 25 2016, Version 10 *)
  • Scheme
    (define (A249824 n) (A078898 (A003961 (A003961 (* 2 n)))))

Formula

a(n) = A078898(A246278(3,n)).
As a composition of other permutations:
a(n) = A249746(A048673(n)).
a(n) = A250475(A249826(n)).
a(n) = A275716(A243071(n)).
Other identities. For all n >= 1:
a(2n) = A273669(a(n)) and a(A003961(n)) = A273664(a(n)). -- Antti Karttunen, Aug 07 2016

A249820 a(1) = 0 and for n > 1: a(n) = A249810(n) - A078898(n) = A078898(A003961(n)) - A078898(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 2, 0, -1, 0, 6, 0, 4, 0, 1, 0, -4, 0, 11, 0, -4, 4, 3, 0, 3, 0, 25, -1, -7, 0, 20, 0, -7, -1, 12, 0, 7, 0, -2, 4, -8, 0, 44, 0, 0, -2, 0, 0, 36, 0, 22, -2, -13, 0, 23, 0, -12, 8, 90, 0, 0, 0, -5, -2, 4, 0, 77, 0, -16, 4, -3, 0, 4, 0, 55, 28, -19, 0, 41, 0, -19, -4, 15, 0, 43, 0, -2, -3, -20, 0, 155, 0, 12, 5, 24, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2014

Keywords

Comments

a(n) tells how many columns off A003961(n) is from the column where n is in square array A083221 (Cf. A083140, the sieve of Eratosthenes. The column index of n in that table is given by A078898(n)).

Examples

			For n = 8 = 2*2*2, A003961(8) = 27 (3*3*3), and while 8 is on row 1 and column 4 of A083221, 27 on the next row is in column 5, thus a(8) = 5 - 4 = 1.
For n = 10 = 2*5, A003961(10) = 21 (3*7), and while 10 is on row 1 and column 5 of A083221, 21 on the next row is in column 4, thus a(10) = 4 - 5 = -1.
		

Crossrefs

Programs

Formula

a(n) = A249810(n) - A078898(n) = A078898(A003961(n)) - A078898(n).
a(k) = 0 when k is a prime or square of prime, among some other numbers.

A250477 Number of times prime(n) (the n-th prime) occurs as the least prime factor among numbers 1 .. (prime(n)^2 * prime(n+1)): a(n) = A078898(A251720(n)).

Original entry on oeis.org

6, 8, 12, 21, 33, 45, 63, 80, 116, 148, 182, 232, 265, 296, 356, 433, 490, 548, 625, 674, 740, 829, 919, 1055, 1187, 1252, 1313, 1376, 1446, 1657, 1897, 2029, 2134, 2301, 2484, 2605, 2785, 2946, 3110, 3301, 3439, 3654, 3869, 3978, 4086, 4349, 4811, 5147, 5273, 5395, 5604, 5787, 6049, 6403, 6684, 6954, 7153
Offset: 1

Views

Author

Antti Karttunen, Dec 14 2014

Keywords

Comments

a(n) = Position of 6 on row n of array A249821. This is always larger than A250474(n), the position of 4 on row n, as 4 is guaranteed to be the first composite term on each row of A249821.
From Antti Karttunen, Mar 29 2015: (Start)
a(n) = 1 + number of positive integers <= (prime(n)*prime(n+1)) whose smallest prime factor is at least prime(n).
That a(n) > A250474(n) can also be seen by realizing that prime(n) must occur at least as many times as the smallest prime factor for the numbers in range 1 .. (prime(n)^2 * prime(n+1)) than for numbers in (smaller) range 1 .. (prime(n)^3), and also by realizing that a(n) cannot be equal to A250474(n) because each row of A249822 is a permutation of natural numbers.
Or more simply, by considering the comment given in A256447 which follows from the new interpretation given above.
(End)

Crossrefs

Column 6 of A249822. Cf. also A250474 (column 4), A250478 (column 8).
First differences: A256446. Cf. also A256447, A256448.

Programs

  • Mathematica
    f[n_] := Count[Range[Prime[n]^2*Prime[n + 1]], x_ /; Min[First /@ FactorInteger[x]] == Prime@ n]; Array[f, 20] (* Michael De Vlieger, Mar 30 2015 *)
  • PARI
    allocatemem(234567890);
    A002110(n) = prod(i=1, n, prime(i));
    A250477(n) = { my(m); m = (prime(n) * prime(n+1)); sumdiv(A002110(n-1), d, (moebius(d)*(m\d))); };
    for(n=1, 23, print1(A250477(n),", "));
    \\ A more practical program:
    
  • PARI
    allocatemem(234567890);
    vecsize = (2^24)-4;
    v020639 = vector(vecsize);
    v020639[1] = 1; for(n=2,vecsize, v020639[n] = vecmin(factor(n)[, 1]));
    A020639(n) = v020639[n];
    A250477(n) = { my(p=prime(n),q=prime(n+1),u=p*q,k=1,s=1); while(k <= u, if(A020639(k) >= p, s++); k++); s; };
    for(n=1, 564, write("b250477.txt", n, " ", A250477(n)));
    \\ Antti Karttunen, Mar 29 2015

Formula

a(n) = A078898(A251720(n)).
a(1) = 1, a(n) = Sum_{d | A002110(n-1)} moebius(d) * floor(A006094(n) / d). [Follows when A251720, (p_n)^2 * p_{n+1} is substituted to the similar formula given for A078898. Here p_n is the n-th prime (A000040(n)), A006094(n) gives the product p_n * p{n+1} and A002110(n) gives the product of the first n primes. Because the latter is always squarefree, one could use here also Liouville's lambda (A008836) instead of Moebius mu (A008683)].
a(n) = A250474(n) + A256447(n).
Showing 1-10 of 15 results. Next