A256447
Number of integers in range (prime(n)^2)+1 .. (prime(n)*prime(n+1)) whose smallest prime factor is at least prime(n): a(n) = A250477(n) - A250474(n).
Original entry on oeis.org
2, 3, 3, 7, 5, 9, 6, 13, 23, 9, 28, 22, 12, 24, 39, 37, 17, 44, 32, 16, 53, 37, 53, 76, 46, 23, 43, 20, 49, 161, 48, 82, 23, 142, 27, 91, 90, 66, 103, 97, 41, 181, 41, 74, 39, 228, 228, 86, 45, 86, 130, 44, 217, 134, 141, 138, 46, 148, 106, 47, 261, 355, 116, 53, 109, 387, 166, 284, 65, 119, 181, 243, 198, 195, 122, 190, 268, 125, 265, 330, 78
Offset: 1
For n=1, we have in range [(prime(1)^2)+1, (prime(1) * prime(2))], that is, in range [5,6], two numbers, 5 and 6, whose smallest prime factor (A020639) is at least 2, thus a(1) = 2.
For n=2, we have in range [10, 15] three numbers, {11, 13, 15}, whose smallest prime factor is at least 3, thus a(2) = 3.
For n=3, we have in range [26, 35] three numbers, {29, 31, 35}, whose smallest prime factor is at least prime(3) = 5, thus a(3) = 3.
-
f[n_] := Count[Range[Prime[n]^2 + 1, Prime[n] Prime[n + 1]],
x_ /; Min[First /@ FactorInteger[x]] >=
Prime@n]; Array[f, 81] (* Michael De Vlieger, Mar 30 2015 *)
-
(define (A256447 n) (- (A250477 n) (A250474 n)))
Original entry on oeis.org
-1, 1, 2, 7, 3, 12, 4, 13, 23, 6, 28, 21, 7, 21, 40, 40, 14, 45, 33, 13, 52, 37, 60, 86, 42, 18, 43, 21, 50, 192, 50, 82, 25, 156, 30, 90, 95, 61, 94, 97, 34, 174, 35, 69, 35, 234, 250, 81, 36, 79, 139, 45, 220, 140, 132, 153, 44, 143, 92, 51, 250, 379, 103, 53, 105, 396, 174, 294, 59, 121, 181, 245, 182, 184, 129, 203, 261, 136, 265, 339, 72
Offset: 1
For n=1, the respective primes are prime(1) = 2 and prime(2) = 3, and the ranges in question are [1, 9] and [1, 6]. The former range contains 4 such numbers whose lpf (A020639) is at least 3, namely {3, 5, 7, 9}, while the latter range contains 5 such numbers whose lpf is at least 2, namely {2, 3, 4, 5, 6}, thus a(1) = 4 - 5 = -1.
For n=2, the respective primes are prime(2) = 3 and prime(3) = 5, and the ranges in question are [1, 25] and [1, 15]. The former range contains 8 such numbers whose lpf is at least 5, namely {5, 7, 11, 13, 17, 19, 23, 25}, while the latter range contains 7 such numbers whose lpf is at least 3, namely {3, 5, 7, 9, 11, 13, 15}, thus a(2) = 8 - 7 = 1.
For n=3, the respective primes are prime(3) = 5 and prime(4) = 7, and the ranges in question are [1, 49] and [1, 35]. The former range contains 13 such numbers whose lpf is at least 7, namely {7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49}, while the latter range contains 11 such numbers whose lpf is at least 5, namely {5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35}, thus a(3) = 13 - 11 = 2.
Original entry on oeis.org
2, 4, 9, 12, 12, 18, 17, 36, 32, 34, 50, 33, 31, 60, 77, 57, 58, 77, 49, 66, 89, 90, 136, 132, 65, 61, 63, 70, 211, 240, 132, 105, 167, 183, 121, 180, 161, 164, 191, 138, 215, 215, 109, 108, 263, 462, 336, 126, 122, 209, 183, 262, 354, 281, 270, 199, 192, 249, 139, 312, 605, 495, 156, 162, 492, 562, 458, 359, 178, 302, 424, 443, 377, 306
Offset: 1
A078898
Number of times the smallest prime factor of n is the smallest prime factor for numbers <= n; a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 4, 11, 1, 12, 2, 13, 5, 14, 1, 15, 1, 16, 6, 17, 3, 18, 1, 19, 7, 20, 1, 21, 1, 22, 8, 23, 1, 24, 2, 25, 9, 26, 1, 27, 4, 28, 10, 29, 1, 30, 1, 31, 11, 32, 5, 33, 1, 34, 12, 35, 1, 36, 1, 37, 13, 38, 3, 39, 1, 40, 14, 41, 1, 42, 6, 43
Offset: 0
Cf.
A002110,
A008683,
A008836,
A020639,
A032742,
A054272,
A055396,
A078899,
A078896,
A083140,
A083221,
A243055,
A246277,
A249738,
A249744,
A249808,
A249809,
A249810,
A249820,
A249818,
A250470,
A250474,
A250477,
A250478,
A251719,
A251724,
A251728.
-
import Data.IntMap (empty, findWithDefault, insert)
a078898 n = a078898_list !! n
a078898_list = 0 : 1 : f empty 2 where
f m x = y : f (insert p y m) (x + 1) where
y = findWithDefault 0 p m + 1
p = a020639 x
-- Reinhard Zumkeller, Apr 06 2015
-
N:= 1000: # to get a(0) to a(N)
Primes:= select(isprime, [2,seq(2*i+1,i=1..floor((N-1)/2))]):
A:= Vector(N):
for p in Primes do
t:= 1:
A[p]:= 1:
for n from p^2 to N by p do
if A[n] = 0 then
t:= t+1:
A[n]:= t
fi
od
od:
0,1,seq(A[i],i=2..N); # Robert Israel, Jan 04 2015
-
Module[{nn=90,spfs},spfs=Table[FactorInteger[n][[1,1]],{n,nn}];Table[ Count[ Take[spfs,i],spfs[[i]]],{i,nn}]] (* Harvey P. Dale, Sep 01 2014 *)
-
\\ Not practical for computing, but demonstrates the sum moebius formula:
A020639(n) = { if(1==n,n,vecmin(factor(n)[, 1])); };
A055396(n) = { if(1==n,0,primepi(A020639(n))); };
A002110(n) = prod(i=1, n, prime(i));
A078898(n) = { my(k,p); if(1==n, n, k = A002110(A055396(n)-1); p = A020639(n); sumdiv(k, d, moebius(d)*(n\(p*d)))); };
\\ Antti Karttunen, Dec 05 2014
-
;; With memoizing definec-macro.
(definec (A078898 n) (if (< n 2) n (+ 1 (A078898 (A249744 n)))))
;; Much better for computing. Needs also code from A249738 and A249744. - Antti Karttunen, Dec 06 2014
A250474
Number of times prime(n) occurs as the least prime factor among numbers 1 .. prime(n)^3: a(n) = A078898(A030078(n)).
Original entry on oeis.org
4, 5, 9, 14, 28, 36, 57, 67, 93, 139, 154, 210, 253, 272, 317, 396, 473, 504, 593, 658, 687, 792, 866, 979, 1141, 1229, 1270, 1356, 1397, 1496, 1849, 1947, 2111, 2159, 2457, 2514, 2695, 2880, 3007, 3204, 3398, 3473, 3828, 3904, 4047, 4121, 4583, 5061, 5228, 5309, 5474, 5743, 5832, 6269, 6543, 6816, 7107, 7197, 7488, 7686, 7784, 8295, 9029, 9248, 9354, 9568, 10351
Offset: 1
prime(1) = 2 occurs as the least prime factor in range [1,8] for four times (all even numbers <= 8), thus a(1) = 4.
prime(2) = 3 occurs as the least prime factor in range [1,27] for five times (when n is: 3, 9, 15, 21, 27), thus a(2) = 5.
Cf.
A000040,
A000879,
A001248,
A002110,
A005867,
A008683,
A008836,
A020639,
A030078,
A055396,
A078898,
A249821,
A251721,
A251722.
-
f[n_] := Count[Range[Prime[n]^3], x_ /; Min[First /@ FactorInteger[x]] == Prime@ n]; Array[f, 16] (* Michael De Vlieger, Mar 30 2015 *)
-
A250474(n) = 3 + primepi(prime(n)^2) - n; \\ Fast implementation.
for(n=1, 5001, write("b250474.txt", n, " ", A250474(n)));
\\ The following program reflects the given sum formula, but is far from the optimal solution:
allocatemem(234567890);
A002110(n) = prod(i=1, n, prime(i));
A020639(n) = if(1==n,n,vecmin(factor(n)[,1]));
A055396(n) = if(1==n,0,primepi(A020639(n)));
A250474(n) = { my(p2 = prime(n)^2); sumdiv(A002110(n-1), d, moebius(d)*(p2\d)); };
for(n=1, 23, print1(A250474(n),", "));
-
(define (A250474 n) (let loop ((k 2)) (if (not (prime? (A249821bi n k))) k (loop (+ k 1))))) ;; This is even slower. Code for A249821bi given in A249821.
A249822
Square array of permutations: A(row,col) = A078898(A246278(row,col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 5, 3, 2, 1, 6, 4, 9, 3, 2, 1, 7, 8, 4, 14, 3, 2, 1, 8, 6, 12, 4, 28, 3, 2, 1, 9, 14, 5, 21, 4, 36, 3, 2, 1, 10, 13, 42, 5, 33, 4, 57, 3, 2, 1, 11, 11, 17, 92, 5, 45, 4, 67, 3, 2, 1, 12, 7, 19, 33, 305, 5, 63, 4, 93, 3, 2, 1, 13, 23, 6, 25, 39, 455, 5, 80, 4, 139, 3, 2, 1, 14, 9, 59, 6, 43, 61, 944, 5, 116, 4, 154, 3, 2, 1, 15, 17, 7, 144, 6, 52, 70, 1238, 5, 148, 4, 210, 3, 2, 1
Offset: 1
The top left corner of the array:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, ...
1, 2, 3, 9, 4, 12, 5, 42, 17, 19, 6, 59, 7, 22, 26, ...
1, 2, 3, 14, 4, 21, 5, 92, 33, 25, 6, 144, 7, 32, 39, ...
1, 2, 3, 28, 4, 33, 5, 305, 39, 43, 6, 360, 7, 48, 50, ...
1, 2, 3, 36, 4, 45, 5, 455, 61, 52, 6, 597, 7, 63, 68, ...
1, 2, 3, 57, 4, 63, 5, 944, 70, 76, 6, 1053, 7, 95, 84, ...
1, 2, 3, 67, 4, 80, 5, 1238, 96, 99, 6, 1502, 7, 106, 121, ...
...
Inverse permutations can be found from table
A249821.
Row k+1 is a right-to-left composition of the first k rows of
A251722.
A251720
a(n) = (p_n)^2 * p_{n+1}, where p_n is the n-th prime, A000040(n).
Original entry on oeis.org
12, 45, 175, 539, 1573, 2873, 5491, 8303, 15341, 26071, 35557, 56129, 72283, 86903, 117077, 165731, 212341, 249307, 318719, 367993, 420991, 518003, 613121, 768337, 950309, 1050703, 1135163, 1247941, 1342553, 1621663, 2112899, 2351057, 2608891, 2878829, 3352351
Offset: 1
-
a251720[n_Integer] := Prime[#]^2*Prime[# + 1] & /@ Range[n]; a251720[35] (* Michael De Vlieger, Dec 14 2014 *)
#[[1]]^2 #[[2]]&/@Partition[Prime[Range[40]],2,1] (* Harvey P. Dale, Mar 12 2015 *)
A250478
Number of times prime(n) occurs as the least prime factor among numbers 1 .. prime(n)^4: a(n) = A078898(A030514(n)).
Original entry on oeis.org
8, 14, 42, 92, 305, 455, 944, 1238, 2085, 3995, 4710, 7757, 10273, 11558, 14742, 20701, 28019, 30444, 39680, 46534, 49856, 62350, 71394, 86977, 111352, 124421, 130649, 145076, 151939, 167759, 236113, 257098, 291830, 302611, 370060, 382610, 427214, 475078
Offset: 1
Original entry on oeis.org
3, 2, 1, 0, 2, -3, 2, 0, 0, 3, 0, 1, 5, 3, -1, -3, 3, -1, -1, 3, 1, 0, -7, -10, 4, 5, 0, -1, -1, -31, -2, 0, -2, -14, -3, 1, -5, 5, 9, 0, 7, 7, 6, 5, 4, -6, -22, 5, 9, 7, -9, -1, -3, -6, 9, -15, 2, 5, 14, -4, 11, -24, 13, 0, 4, -9, -8, -10, 6, -2, 0, -2, 16, 11, -7, -13, 7, -11, 0
Offset: 1
Showing 1-9 of 9 results.
Comments