cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A078898 Number of times the smallest prime factor of n is the smallest prime factor for numbers <= n; a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 4, 11, 1, 12, 2, 13, 5, 14, 1, 15, 1, 16, 6, 17, 3, 18, 1, 19, 7, 20, 1, 21, 1, 22, 8, 23, 1, 24, 2, 25, 9, 26, 1, 27, 4, 28, 10, 29, 1, 30, 1, 31, 11, 32, 5, 33, 1, 34, 12, 35, 1, 36, 1, 37, 13, 38, 3, 39, 1, 40, 14, 41, 1, 42, 6, 43
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 12 2002

Keywords

Comments

From Antti Karttunen, Dec 06 2014: (Start)
For n >= 2, a(n) tells in which column of the sieve of Eratosthenes (see A083140, A083221) n occurs in. A055396 gives the corresponding row index.
(End)

Crossrefs

Programs

  • Haskell
    import Data.IntMap (empty, findWithDefault, insert)
    a078898 n = a078898_list !! n
    a078898_list = 0 : 1 : f empty 2 where
       f m x = y : f (insert p y m) (x + 1) where
               y = findWithDefault 0 p m + 1
               p = a020639 x
    -- Reinhard Zumkeller, Apr 06 2015
  • Maple
    N:= 1000: # to get a(0) to a(N)
    Primes:= select(isprime, [2,seq(2*i+1,i=1..floor((N-1)/2))]):
    A:= Vector(N):
    for p in Primes do
      t:= 1:
      A[p]:= 1:
      for n from p^2 to N by p do
        if A[n] = 0 then
           t:= t+1:
           A[n]:= t
        fi
      od
    od:
    0,1,seq(A[i],i=2..N); # Robert Israel, Jan 04 2015
  • Mathematica
    Module[{nn=90,spfs},spfs=Table[FactorInteger[n][[1,1]],{n,nn}];Table[ Count[ Take[spfs,i],spfs[[i]]],{i,nn}]] (* Harvey P. Dale, Sep 01 2014 *)
  • PARI
    \\ Not practical for computing, but demonstrates the sum moebius formula:
    A020639(n) = { if(1==n,n,vecmin(factor(n)[, 1])); };
    A055396(n) = { if(1==n,0,primepi(A020639(n))); };
    A002110(n) = prod(i=1, n, prime(i));
    A078898(n) = { my(k,p); if(1==n, n, k = A002110(A055396(n)-1); p = A020639(n); sumdiv(k, d, moebius(d)*(n\(p*d)))); };
    \\ Antti Karttunen, Dec 05 2014
    
  • Scheme
    ;; With memoizing definec-macro.
    (definec (A078898 n) (if (< n 2) n (+ 1 (A078898 (A249744 n)))))
    ;; Much better for computing. Needs also code from A249738 and A249744. - Antti Karttunen, Dec 06 2014
    

Formula

Ordinal transform of A020639 (Lpf). - Franklin T. Adams-Watters, Aug 28 2006
From Antti Karttunen, Dec 05-08 2014: (Start)
a(0) = 0, a(1) = 1, a(n) = 1 + a(A249744(n)).
a(0) = 0, a(1) = 1, a(n) = sum_{d | A002110(A055396(n)-1)} moebius(d) * floor(n / (A020639(n)*d)).
a(0) = 0, a(1) = 1, a(n) = sum_{d | A002110(A055396(n)-1)} moebius(d) * floor(A032742(n) / d).
[Instead of Moebius mu (A008683) one could use Liouville's lambda (A008836) in the above formulas, because all primorials (A002110) are squarefree. A020639(n) gives the smallest prime dividing n, and A055396 gives its index].
a(0) = 0, a(1) = 1, a(2n) = n, a(2n+1) = a(A250470(2n+1)). [After a similar recursive formula for A246277. However, this cannot be used for computing the sequence, unless a definition for A250470(n) is found which doesn't require computing the value of A078898(n).]
For n > 1: a(n) = A249810(n) - A249820(n).
(End)
Other identities:
a(2*n) = n.
For n > 1: a(n)=1 if and only if n is prime.
For n > 1: a(n) = A249808(n, A055396(n)) = A249809(n, A055396(n)).
For n > 1: a(n) = A246277(A249818(n)).
From Antti Karttunen, Jan 04 2015: (Start)
a(n) = 2 if and only if n is a square of a prime.
For all n >= 1: a(A251728(n)) = A243055(A251728(n)) + 2. That is, if n is a semiprime of the form prime(i)*prime(j), prime(i) <= prime(j) < prime(i)^2, then a(n) = (j-i)+2.
(End)
a(A000040(n)^2) = 2; a(A000040(n)*A000040(n+1)) = 3. - Reinhard Zumkeller, Apr 06 2015
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Sum_{k>=1} (A038110(k)/A038111(k))^2 = 0.2847976823663... . - Amiram Eldar, Oct 26 2024

Extensions

a(0) = 0 prepended for recurrence's sake by Antti Karttunen, Dec 06 2014

A246277 Column index of n in A246278: a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 15, 1, 16, 7, 17, 3, 18, 1, 19, 11, 20, 1, 21, 1, 22, 6, 23, 1, 24, 2, 25, 13, 26, 1, 27, 5, 28, 17, 29, 1, 30, 1, 31, 10, 32, 7, 33, 1, 34, 19, 35, 1, 36, 1, 37, 9, 38, 3, 39, 1, 40, 8, 41, 1, 42
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

If n >= 2, n occurs in column a(n) of A246278.
By convention, a(1) = 0 because 1 does not occur in A246278.

Crossrefs

Terms of A348717 halved. A305897 is the restricted growth sequence transform.
Positions of terms 1 .. 8 in this sequence are given by the following sequences: A000040, A001248, A006094, A030078, A090076, A251720, A090090, A030514.
Cf. A078898 (has the same role with array A083221 as this sequence has with A246278).
This sequence is also used in the definition of the following permutations: A246274, A246276, A246675, A246677, A246683, A249815, A249817 (A249818), A249823, A249825, A250244, A250245, A250247, A250249.
Also in the definition of arrays A249821, A251721, A251722.
Sum of prime indices of a(n) is A359358(n) + A001222(n) - 1, cf. A326844.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    a246277[n_Integer] := Module[{f, p, a064989, a},
      f[x_] := Transpose@FactorInteger[x];
      p[x_] := Which[
        x == 1, 1,
        x == 2, 1,
        True, NextPrime[x, -1]];
      a064989[x_] := Times @@ Power[p /@ First[f[x]], Last[f[x]]];
      a[1] = 0;
      a[x_] := If[EvenQ[x], x/2, NestWhile[a064989, x, OddQ]/2];
    a/@Range[n]]; a246277[84] (* Michael De Vlieger, Dec 19 2014 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A246277(n) = { if(1==n, 0, while((n%2), n = A064989(n)); (n/2)); };
    
  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2); \\ Antti Karttunen, Apr 30 2022
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a(n): return 0 if n==1 else n//2 if n%2==0 else a(a064989(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; two different variants, the second one employing memoizing definec-macro)
    (define (A246277 n) (if (= 1 n) 0 (let loop ((n n)) (if (even? n) (/ n 2) (loop (A064989 n))))))
    (definec (A246277 n) (cond ((= 1 n) 0) ((even? n) (/ n 2)) (else (A246277 (A064989 n)))))
    

Formula

a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)) = a(A064216(n+1)). [Cf. the formula for A252463.]
Instead of the equation for a(2n+1) above, we may write a(A003961(n)) = a(n). - Peter Munn, May 21 2022
Other identities. For all n >= 1, the following holds:
For all w >= 0, a(p_{i} * p_{j} * ... * p_{k}) = a(p_{i+w} * p_{j+w} * ... * p_{k+w}).
For all n >= 2, A001222(a(n)) = A001222(n)-1. [a(n) has one less prime factor than n. Thus each semiprime (A001358) is mapped to some prime (A000040), etc.]
For all n >= 2, a(n) = A078898(A249817(n)).
For semiprimes n = p_i * p_j, j >= i, a(n) = A000040(1+A243055(n)) = p_{1+j-i}.
a(n) = floor(A348717(n)/2). - Antti Karttunen, Apr 30 2022
If n has prime factorization Product_{i=1..k} prime(x_i), then a(n) = Product_{i=2..k} prime(x_i-x_1+1). The opposite version is A358195, prime indices A358172, even bisection A241916. - Gus Wiseman, Dec 29 2022

A083221 Sieve of Eratosthenes arranged as an array and read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 21, 35, 49, 11, 12, 27, 55, 77, 121, 13, 14, 33, 65, 91, 143, 169, 17, 16, 39, 85, 119, 187, 221, 289, 19, 18, 45, 95, 133, 209, 247, 323, 361, 23, 20, 51, 115, 161, 253, 299, 391, 437, 529, 29, 22, 57, 125, 203, 319, 377, 493, 551, 667
Offset: 2

Views

Author

Yasutoshi Kohmoto, Jun 05 2003

Keywords

Comments

This is permutation of natural numbers larger than 1.
From Antti Karttunen, Dec 19 2014: (Start)
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252460 gives an inverse permutation. See also A249741.
For navigating in this array:
A055396(n) gives the row number of row where n occurs, and A078898(n) gives its column number, both starting their indexing from 1.
A250469(n) gives the number immediately below n, and when n is an odd number >= 3, A250470(n) gives the number immediately above n. If n is a composite, A249744(n) gives the number immediately left of n.
First cube of each row, which is {the initial prime of the row}^3 and also the first number neither a prime or semiprime, occurs on row n at position A250474(n).
(End)
The n-th row contains the numbers whose least prime factor is the n-th prime: A020639(T(n,k)) = A000040(n). - Franklin T. Adams-Watters, Aug 07 2015

Examples

			The top left corner of the array:
   2,   4,   6,    8,   10,   12,   14,   16,   18,   20,   22,   24,   26
   3,   9,  15,   21,   27,   33,   39,   45,   51,   57,   63,   69,   75
   5,  25,  35,   55,   65,   85,   95,  115,  125,  145,  155,  175,  185
   7,  49,  77,   91,  119,  133,  161,  203,  217,  259,  287,  301,  329
  11, 121, 143,  187,  209,  253,  319,  341,  407,  451,  473,  517,  583
  13, 169, 221,  247,  299,  377,  403,  481,  533,  559,  611,  689,  767
  17, 289, 323,  391,  493,  527,  629,  697,  731,  799,  901, 1003, 1037
  19, 361, 437,  551,  589,  703,  779,  817,  893, 1007, 1121, 1159, 1273
  23, 529, 667,  713,  851,  943,  989, 1081, 1219, 1357, 1403, 1541, 1633
  29, 841, 899, 1073, 1189, 1247, 1363, 1537, 1711, 1769, 1943, 2059, 2117
  ...
		

Crossrefs

Transpose of A083140.
One more than A249741.
Inverse permutation: A252460.
Column 1: A000040, Column 2: A001248.
Row 1: A005843, Row 2: A016945, Row 3: A084967, Row 4: A084968, Row 5: A084969, Row 6: A084970.
Main diagonal: A083141.
First semiprime in each column occurs at A251717; A251718 & A251719 with additional criteria. A251724 gives the corresponding semiprimes for the latter. See also A251728.
Permutations based on mapping numbers between this array and A246278: A249817, A249818, A250244, A250245, A250247, A250249. See also: A249811, A249814, A249815.
Also used in the definition of the following arrays of permutations: A249821, A251721, A251722.

Programs

  • Mathematica
    lim = 11; a = Table[Take[Prime[n] Select[Range[lim^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], lim], {n, lim}]; Flatten[Table[a[[i, n - i + 1]], {n, lim}, {i, n}]] (* Michael De Vlieger, Jan 04 2016, after Yasutoshi Kohmoto at A083140 *)

Extensions

More terms from Hugo Pfoertner, Jun 13 2003

A250469 a(1) = 1; and for n > 1, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)+1, where A055396(n) is the index of smallest prime dividing n.

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 21, 25, 27, 13, 33, 17, 39, 35, 45, 19, 51, 23, 57, 55, 63, 29, 69, 49, 75, 65, 81, 31, 87, 37, 93, 85, 99, 77, 105, 41, 111, 95, 117, 43, 123, 47, 129, 115, 135, 53, 141, 121, 147, 125, 153, 59, 159, 91, 165, 145, 171, 61, 177, 67, 183, 155, 189, 119, 195, 71, 201, 175, 207, 73, 213, 79, 219, 185, 225, 143, 231, 83, 237, 205, 243, 89, 249, 133, 255
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2014

Keywords

Comments

Permutation of odd numbers.
For n >= 2, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)+1. In other words, a(n) tells which number is located immediately below n in the sieve of Eratosthenes (see A083140, A083221) in the same column of the sieve that contains n.
A250471(n) = (a(n)+1)/2 is a permutation of natural numbers.
Coincides with A003961 in all terms which are primes. - M. F. Hasler, Sep 17 2016. Note: primes are a proper subset of A280693 which gives all n such that a(n) = A003961(n). - Antti Karttunen, Mar 08 2017

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[ 1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[ FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1+2 == k2, Return[m2]]]]; Array[a, 100] (* Jean-François Alcover, Mar 08 2016 *)
    g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1] &, #] &@ Map[Position[Lookup[s, g@#], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* Michael De Vlieger, Mar 08 2017, Version 10 *)

Formula

a(1) = 1, a(n) = A083221(A055396(n)+1, A078898(n)).
a(n) = A249817(A003961(A249818(n))).
Other identities. For all n >= 1:
A250470(a(n)) = A268674(a(n)) = n. [A250470 and A268674 provide left inverses for this function.]
a(2n) = A016945(n-1). [Maps even numbers to the numbers of form 6n+3, in monotone order.]
a(A016945(n-1)) = A084967(n). [Which themselves are mapped to the terms of A084967, etc. Cf. the Example section of A083140.]
a(A000040(n)) = A000040(n+1). [Each prime is mapped to the next prime.]
For all n >= 2, A055396(a(n)) = A055396(n)+1. [A more general rule.]
A046523(a(n)) = A283465(n). - Antti Karttunen, Mar 08 2017

A252748 a(n) = A003961(n) - 2*n.

Original entry on oeis.org

-1, -1, -1, 1, -3, 3, -3, 11, 7, 1, -9, 21, -9, 5, 5, 49, -15, 39, -15, 23, 13, -5, -17, 87, -1, -1, 71, 43, -27, 45, -25, 179, -1, -11, 7, 153, -33, -7, 7, 109, -39, 81, -39, 29, 85, -5, -41, 309, 23, 47, -7, 49, -47, 267, -19, 185, 1, -23, -57, 195, -55, -13, 149, 601, -11, 63, -63, 35, 7, 91, -69, 531, -67, -25, 95, 55, -11, 99
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2014

Keywords

Crossrefs

Partial sums: A252749.
Cf. A246282 (positions of the positive terms), A252742 (their characteristic function).

Programs

  • Mathematica
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1] - 2 n, {n, 78}] (* Michael De Vlieger, May 14 2017 *)
  • Scheme
    (define (A252748 n) (- (A003961 n) (* 2 n)))

Formula

a(n) = A003961(n) - 2*n.
a(n) = A252750(A156552(n)).
a(n) = A286385(n) - A033879(n). - Antti Karttunen, May 13 2017
Other identities. For all n >= 1:
sign(a(n)) = (-1)^(1+A252742(n)).

A250470 a(n) = A249817(A064989(A249818(n))).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 13, 4, 17, 3, 8, 7, 19, 2, 9, 11, 10, 5, 23, 6, 29, 1, 12, 13, 15, 4, 31, 17, 14, 3, 37, 10, 41, 7, 16, 19, 43, 2, 25, 9, 18, 11, 47, 8, 21, 5, 20, 23, 53, 6, 59, 29, 22, 1, 27, 14, 61, 13, 24, 15, 67, 4, 71, 31, 26, 17, 35, 22, 73, 3, 28, 37, 79, 10, 33, 41, 30, 7, 83, 12, 55, 19, 32, 43, 39, 2, 89, 25, 34, 9, 97, 26, 101
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2014

Keywords

Comments

Odd bisection, A250472, is a permutation of natural numbers. A250479 gives the even bisection.
For odd numbers n >= 3, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)-1. In other words, a(n) tells which number is located immediately above n in the sieve of Eratosthenes (see A083140, A083221) in the same column of the sieve that contains n.

Crossrefs

Odd bisection: A250472.
Even bisection: A250479.
Differs from A064989 for the first time at n=21, where a(21) = 8, while
A064989(21) = 10.

Programs

Formula

a(n) = A249817(A064989(A249818(n))).
Other identities. For all n >= 1:
a(A250469(n)) = n. [This is an inverse function for injection A250469.]
For all odd numbers n >= 3: A055396(a(n)) = A055396(n)-1.

A252750 a(n) = A003961(A005940(n+1)) - 2 * A005940(n+1).

Original entry on oeis.org

-1, -1, -1, 1, -3, 3, 7, 11, -3, 1, 5, 21, -1, 39, 71, 49, -9, 5, 13, 23, 7, 45, 85, 87, 23, 47, 95, 153, 93, 267, 463, 179, -9, -5, -1, 43, -19, 81, 149, 109, -11, 91, 175, 195, 189, 345, 605, 309, -73, 167, 311, 241, 357, 435, 775, 531, 645, 529, 965, 909, 1151, 1551, 2639, 601, -15, -1, 7, 29, -11, 63, 127, 185, 5, 53, 125, 327, 87, 573, 997, 407, -65, 121, 253, 413, 231
Offset: 0

Views

Author

Antti Karttunen, Dec 21 2014

Keywords

Comments

From Antti Karttunen, May 21 2024: (Start)
Like A005940 itself, also this irregular table derived from it can be represented as a binary tree:
-1
|
................. -1 ..................
-1 1
-3 ......./ \....... 3 7 ......./ \....... 11
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
-3 1 5 21 -1 39 71 49
-9 5 13 23 7 45 85 87 23 47 95 153 93 267 463 179
etc.
(End)

Crossrefs

Cf. A252743 (characteristic function for positive terms), A252751 (partial sums of sequence b(0) = 0, b(n) = a(n), for n>0).
Cf. A062234 (when negated forms the left edge apart from the initial term), A003063 (right edge).
Cf. also A372562 (apart from the initial term, same data in square array).

Programs

Formula

a(n) = A003961(A005940(n+1)) - 2 * A005940(n+1).
a(n) = A252748(A005940(n+1)).
Other identities. For all n >= 1:
sgn(a(n)) = (-1)^(1+A252743(n)).

Extensions

Term a(0) = -1 prepended by Antti Karttunen, May 21 2024

A280692 a(n) = A003961(n) - A250469(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 6, 0, -6, 0, 12, 0, -6, 0, 36, 0, 24, 0, 6, 0, -24, 0, 66, 0, -24, 60, 18, 0, 18, 0, 150, -20, -42, 0, 120, 0, -42, -10, 72, 0, 42, 0, -12, 60, -48, 0, 264, 0, 0, -30, 0, 0, 216, 0, 132, -30, -78, 0, 138, 0, -72, 120, 540, 0, 0, 0, -30, -30, 24, 0, 462, 0, -96, 60, -18, 0, 24, 0, 330, 420, -114, 0, 246
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2017

Keywords

Crossrefs

Cf. A280693 (gives the positions of zeros).
Cf. also arrays A083221 and A246278.

Programs

  • Mathematica
    f[n_] := f[n] = Which[n == 1, 1, PrimeQ@ n, NextPrime@ n, True, Times @@ Replace[FactorInteger[n], {p_, e_} :> f[p]^e, 1]]; g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[ Function[{m, n}, f@ n - Lookup[s, g[n] + 1][[m]] + Boole[n == 1]][#1, First@ #2] &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* Michael De Vlieger, Mar 09 2017, Version 10 *)
  • Scheme
    (define (A280692 n) (- (A003961 n) (A250469 n)))

Formula

a(n) = A003961(n) - A250469(n).

A249810 a(1) = 0, a(n) = A078898(A003961(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 5, 2, 4, 1, 8, 1, 6, 3, 14, 1, 13, 1, 11, 4, 7, 1, 23, 2, 9, 9, 17, 1, 18, 1, 41, 5, 10, 3, 38, 1, 12, 6, 32, 1, 28, 1, 20, 12, 15, 1, 68, 2, 25, 7, 26, 1, 63, 4, 50, 8, 16, 1, 53, 1, 19, 19, 122, 5, 33, 1, 29, 10, 39, 1, 113, 1, 21, 17, 35, 3, 43, 1, 95, 42, 22, 1, 83, 6, 24, 11, 59, 1, 88, 4, 44, 13, 27, 7, 203
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2014

Keywords

Crossrefs

Programs

Formula

a(1) = 0, a(n) = A078898(A003961(n)).
a(1) = 0, a(n) = A078898(n) + A249820(n).

A280492 a(1) = 0; for n > 1, a(n) = A246277(n) - A078898(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 7, 0, 0, 0, 0, 0, -1, 0, 2, 0, 0, 0, 7, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, -6, 0, 0, 0, 5, 0, 8, 0, 0, 0, 1, 0, 13, 0, 6, 0, 0, 0, -3, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 12, 0, 0, 0, 9, 0, 2, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2017

Keywords

Comments

For n > 1, a(n) gives the difference of column positions of n's location in arrays A246278 and A083221. Note that any n occurs on the same row in both arrays.

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A246277(n) - A078898(n).
Showing 1-10 of 10 results.