A016813 a(n) = 4*n + 1.
1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233, 237
Offset: 0
Examples
From _Leo Tavares_, Jul 02 2021: (Start) Illustration of initial terms: o o o o o o o o o o o o o o o o o o o o o o o o o o o o (End)
References
- K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 150.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Colin Defant and Noah Kravitz, Loops and Regions in Hitomezashi Patterns, arXiv:2201.03461 [math.CO], 2022. Theorem 1.3.
- Gennady Eremin, Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant, arXiv:2405.16143 [math.CO], 2024. See pp. 5, 8, 14.
- Gennady Eremin, Infinite matrix of odd natural numbers. A bit about Sophie Germain prime numbers, arXiv:2501.17090 [math.GM], 2025. See pp. 3, 11.
- L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 16.
- Tanya Khovanova, Recursive Sequences
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original German edition of "Theory and Application of Infinite Series")
- Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- William A. Stein's The Modular Forms Database, PARI-readable dimension tables for Gamma_0(N)
- Eric Weisstein's World of Mathematics, Clique
- Eric Weisstein's World of Mathematics, Hilbert Number
- Eric Weisstein's World of Mathematics, Sunlet Graph
- Wikipedia, Interval arithmetic
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..70],n->4*n+1); # Muniru A Asiru, Aug 08 2018
-
Haskell
a016813 = (+ 1) . (* 4) a016813_list = [1, 5 ..] -- Reinhard Zumkeller, Feb 14 2012
-
Magma
[n: n in [1..250 by 4]];
-
Maple
seq(4*k+1, k=0..100); # Wesley Ivan Hurt, Sep 28 2013
-
Mathematica
Range[1, 237, 4] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *) Table[4 n + 1, {n, 0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) 4 Range[0, 20] + 1 (* Eric W. Weisstein, Nov 29 2017 *) LinearRecurrence[{2, -1}, {5, 9}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) CoefficientList[Series[(1 + 3 x)/(-1 + x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
PARI
a(n)=4*n+1 \\ Charles R Greathouse IV, Mar 22 2013
-
PARI
x='x+O('x^100); Vec((1+3*x)/(1-x)^2) \\ Altug Alkan, Oct 22 2015
-
Scala
(0 to 59).map(4 * + 1) // _Alonso del Arte, Aug 08 2018
Formula
a(n) = A005408(2*n).
Sum_{n>=0} (-1)^n/a(n) = (1/(4*sqrt(2)))*(Pi+2*log(sqrt(2)+1)) = A181048 [Jolley]. - Benoit Cloitre, Apr 05 2002 [corrected by Amiram Eldar, Jul 30 2023]
G.f.: (1+3*x)/(1-x)^2. - Paul Barry, Feb 27 2003 [corrected for offset 0 by Wolfdieter Lang, Oct 03 2014]
(1 + 5*x + 9*x^2 + 13*x^3 + ...) = (1 + 2*x + 3*x^2 + ...) / (1 - 3*x + 9*x^2 - 27*x^3 + ...). - Gary W. Adamson, Jul 03 2003
a(n) = A004766(n-1). - R. J. Mathar, Oct 26 2008
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=5. a(n) = 4 + a(n-1). - Philippe Deléham, Nov 03 2008
A056753(a(n)) = 3. - Reinhard Zumkeller, Aug 23 2009
a(n) = 8*n - 2 - a(n-1) for n > 0, a(0) = 1. - Vincenzo Librandi, Nov 20 2010
The identity (4*n+1)^2 - (4*n^2+2*n)*(2)^2 = 1 can be written as a(n)^2 - A002943(n)*2^2 = 1. - Vincenzo Librandi, Mar 11 2009 - Nov 25 2012
A089911(6*a(n)) = 8. - Reinhard Zumkeller, Jul 05 2013
a(n) = A004767(n) - 2. - Jean-Bernard François, Sep 27 2013
From Ilya Gutkovskiy, Jul 29 2016: (Start)
E.g.f.: (1 + 4*x)*exp(x).
a(n) = Sum_{k = 0..n} A123932(k).
a(A005098(k)) = x^2 + y^2.
Inverse binomial transform of A014480. (End)
Dirichlet g.f.: 4*Zeta(-1 + s) + Zeta(s). - Stefano Spezia, Nov 02 2018
Comments