A030431
Primes of form 10n+3.
Original entry on oeis.org
3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263, 283, 293, 313, 353, 373, 383, 433, 443, 463, 503, 523, 563, 593, 613, 643, 653, 673, 683, 733, 743, 773, 823, 853, 863, 883, 953, 983, 1013, 1033, 1063, 1093, 1103, 1123, 1153, 1163, 1193
Offset: 1
A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A075326
Anti-Fibonacci numbers: start with a(0) = 0, and extend by the rule that the next term is the sum of the two smallest numbers that are not in the sequence nor were used to form an earlier sum.
Original entry on oeis.org
0, 3, 9, 13, 18, 23, 29, 33, 39, 43, 49, 53, 58, 63, 69, 73, 78, 83, 89, 93, 98, 103, 109, 113, 119, 123, 129, 133, 138, 143, 149, 153, 159, 163, 169, 173, 178, 183, 189, 193, 199, 203, 209, 213, 218, 223, 229, 233, 238, 243, 249, 253, 258, 263, 269, 273, 279, 283
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Wieb Bosma, Rene Bruin, Robbert Fokkink, Jonathan Grube, Anniek Reuijl, and Thian Tromp, Using Walnut to solve problems from the OEIS, arXiv:2503.04122 [math.NT], 2025. See pp. 7, 14.
- Robbert Fokkink and Gandhar Joshi, Anti-recurrence sequences, arXiv:2506.13337 [math.NT], 2025. See pp. 2, 18.
- D. R. Hofstadter, Anti-Fibonacci numbers, Oct 23 2014.
- Augusto Santi, A conjecture on Anti-k-nacci numbers, Mathematics StackExchange, 2025.
- Thomas Zaslavsky, Anti-Fibonacci Numbers: A Formula, Sep 26 2016
-
import Data.List ((\\))
a075326 n = a075326_list !! n
a075326_list = 0 : f [1..] where
f ws@(u:v:_) = y : f (ws \\ [u, v, y]) where y = u + v
-- Reinhard Zumkeller, Oct 26 2014
-
# Maple code for M+1 terms of sequence, from N. J. A. Sloane, Oct 26 2014
c:=0; a:=[c]; t:=0; M:=100;
for n from 1 to M do
s:=t+1; if s in a then s:=s+1; fi;
t:=s+1; if t in a then t:=t+1; fi;
c:=s+t;
a:=[op(a),c];
od:
[seq(a[n],n=1..nops(a))];
-
(* Three sequences a,b,c as in Comments *)
z = 200;
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
a = {}; b = {}; c = {};
Do[AppendTo[a,
mex[Flatten[{a, b, c}], If[Length[a] == 0, 1, Last[a]]]];
AppendTo[b, mex[Flatten[{a, b, c}], Last[a]]];
AppendTo[c, Last[a] + Last[b]], {z}];
Take[a, 100] (* A075425 *)
Take[b, 100] (* A047215 *)
Take[c, 100] (* A075326 *)
Grid[{Join[{"n"}, Range[0, 20]], Join[{"a(n)"}, Take[a, 21]],
Join[{"b(n)"}, Take[b, 21]], Join[{"c(n)"}, Take[c, 21]]},
Alignment -> ".",
Dividers -> {{2 -> Red, -1 -> Blue}, {2 -> Red, -1 -> Blue}}]
(* Peter J. C. Moses, Apr 26 2018 *)
********
(* Sequence "a" via A035263 substitutions *)
Accumulate[Prepend[Flatten[Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {1, 0}}] &, {0}, 7] /. Thread[{0, 1} -> {{5, 5}, {6, 4}}]], 3]]
(* Peter J. C. Moses, May 01 2018 *)
********
(* Sequence "a" via Hofstadter substitutions; see his 2014 link *)
morph = Rest[Nest[Flatten[#/.{1->{3},3->{1,1,3}}]&,{1},6]]
hoff = Accumulate[Prepend[Flatten[morph/.Thread[{1,3}->{{6,4,5,5},{6,4,6,4,6,4,5,5}}]],3]]
(* Peter J. C. Moses, May 01 2018 *)
-
def aupton(nn):
alst, disallowed, mink = [0], {0}, 1
for n in range(1, nn+1):
nextk = mink + 1
while nextk in disallowed: nextk += 1
an = mink + nextk
alst.append(an)
disallowed.update([mink, nextk, an])
mink = nextk + 1
while mink in disallowed: mink += 1
return alst
print(aupton(57)) # Michael S. Branicky, Jan 31 2022
-
def A075326(n): return 5*n-1-int((n|(~((m:=n-1>>1)+1)&m).bit_length())&1) if n else 0 # Chai Wah Wu, Sep 11 2024
A106621
a(n) = numerator of n/(n+20).
Original entry on oeis.org
0, 1, 1, 3, 1, 1, 3, 7, 2, 9, 1, 11, 3, 13, 7, 3, 4, 17, 9, 19, 1, 21, 11, 23, 6, 5, 13, 27, 7, 29, 3, 31, 8, 33, 17, 7, 9, 37, 19, 39, 2, 41, 21, 43, 11, 9, 23, 47, 12, 49, 5, 51, 13, 53, 27, 11, 14, 57, 29, 59, 3, 61, 31, 63, 16, 13, 33, 67, 17, 69, 7, 71, 18, 73, 37, 15, 19, 77, 39, 79
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Peter Bala, A note on the sequence of numerators of a rational function, 2019.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1).
-
List([0..80],n->NumeratorRat(n/(n+20))); # Muniru A Asiru, Feb 19 2019
-
[Numerator(n/(n+20)): n in [0..100]]; // Vincenzo Librandi, Mar 06 2018
-
seq(numer(n/(n+20)),n=0..80); # Muniru A Asiru, Feb 19 2019
-
f[n_]:=Numerator[n/(n+20)];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011 *)
-
a(n) = numerator(n/(n+20)); \\ Michel Marcus, Mar 07 2018
-
[lcm(20,n)/20 for n in range(0, 80)] # Zerinvary Lajos, Jun 12 2009
A017317
a(n) = 10*n + 4.
Original entry on oeis.org
4, 14, 24, 34, 44, 54, 64, 74, 84, 94, 104, 114, 124, 134, 144, 154, 164, 174, 184, 194, 204, 214, 224, 234, 244, 254, 264, 274, 284, 294, 304, 314, 324, 334, 344, 354, 364, 374, 384, 394, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 504, 514, 524, 534
Offset: 0
A063226
Dimension of the space of weight 2n cuspidal newforms for Gamma_0(63).
Original entry on oeis.org
3, 7, 13, 17, 23, 27, 33, 37, 43, 47, 53, 57, 63, 67, 73, 77, 83, 87, 93, 97, 103, 107, 113, 117, 123, 127, 133, 137, 143, 147, 153, 157, 163, 167, 173, 177, 183, 187, 193, 197, 203, 207, 213, 217, 223, 227, 233, 237, 243, 247
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Greg Martin, Dimensions of the spaces of cusp forms and newforms on Gamma_0(N) and Gamma_1(N), J. Numb. Theory 112 (2005) 298-331, Theorem 1.
- William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N)).
- William A. Stein, The modular forms database.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
-
# see A063195
-
Table[4 Floor[n/2] + 6 Floor[(n - 1)/2] + 3, {n, 50}] (* or *)
Table[SeriesCoefficient[3 x - x^2 (-7 - 6 x + 3 x^2)/((1 + x) (x - 1)^2), {x, 0, n}], {n, 50}] (* Michael De Vlieger, Mar 30 2016 *)
LinearRecurrence[{1, 1, -1}, {3, 7, 13}, 100] (* G. C. Greubel, Mar 30 2016 *)
-
my(x='x+O('x^99)); Vec(3*x-x^2*(-7-6*x+3*x^2)/((1+x)*(x-1)^2)) \\ Altug Alkan, Mar 31 2016
-
a(n)=5*n-3+n%2 \\ Charles R Greathouse IV, Mar 31 2016
A147874
a(n) = (5*n-7)*(n-1).
Original entry on oeis.org
0, 3, 16, 39, 72, 115, 168, 231, 304, 387, 480, 583, 696, 819, 952, 1095, 1248, 1411, 1584, 1767, 1960, 2163, 2376, 2599, 2832, 3075, 3328, 3591, 3864, 4147, 4440, 4743, 5056, 5379, 5712, 6055, 6408, 6771, 7144, 7527, 7920, 8323, 8736, 9159, 9592, 10035
Offset: 1
-
List([1..50], n-> (5*n-7)*(n-1)); # G. C. Greubel, Jul 30 2019
-
[ 0 ] cat [ &+[ 10*k+3: k in [0..n-1] ]: n in [1..50] ]; // Klaus Brockhaus, Nov 17 2008
-
[ 5*n^2-2*n: n in [0..50] ];
-
s=0;lst={s};Do[s+=n++ +3;AppendTo[lst,s],{n,0,6!,10}];lst
Table[5n^2-12n+7,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{0,3,16},50] (* or *) PolygonalNumber[12,Range[0,100,2]]/4 (* Harvey P. Dale, Aug 08 2021 *)
-
{m=50; a=7; for(n=0, m, print1(a=a+10*(n-1)+3, ","))} \\ Klaus Brockhaus, Nov 17 2008
-
[(5*n-7)*(n-1) for n in (1..50)] # G. C. Greubel, Jul 30 2019
Original entry on oeis.org
0, 3, 8, 16, 26, 39, 54, 72, 92, 115, 140, 168, 198, 231, 266, 304, 344, 387, 432, 480, 530, 583, 638, 696, 756, 819, 884, 952, 1022, 1095, 1170, 1248, 1328, 1411, 1496, 1584, 1674, 1767, 1862, 1960, 2060, 2163, 2268, 2376, 2486, 2599, 2714, 2832, 2952, 3075, 3200
Offset: 0
-
[ n*(n+1) + (n+1)^2 div 4: n in [0..50] ];
-
A115006:=n->(10*n^2 + 12*n + 1 - (-1)^n)/8: seq(A115006(n), n=0..50); # Wesley Ivan Hurt, Oct 27 2014
-
Table[(10*n^2 + 12*n + 1 - (-1)^n)/8, {n, 0, 50}] (* Wesley Ivan Hurt, Oct 27 2014 *)
LinearRecurrence[{2,0,-2,1},{0,3,8,16},60] (* Harvey P. Dale, Jan 13 2015 *)
-
{for(n=0, 50, print1(n*(n+1)+floor((n+1)^2/4), ","))}
A156677
a(n) = 81*n^2 - 118*n + 43.
Original entry on oeis.org
43, 6, 131, 418, 867, 1478, 2251, 3186, 4283, 5542, 6963, 8546, 10291, 12198, 14267, 16498, 18891, 21446, 24163, 27042, 30083, 33286, 36651, 40178, 43867, 47718, 51731, 55906, 60243, 64742, 69403, 74226, 79211, 84358, 89667, 95138, 100771, 106566, 112523, 118642
Offset: 0
-
I:=[43, 6, 131]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
-
LinearRecurrence[{3,-3,1},{43,6,131},40]
-
a(n)=81*n^2-118*n+43 \\ Charles R Greathouse IV, Dec 23 2011
A260181
Numbers whose last digit is prime.
Original entry on oeis.org
2, 3, 5, 7, 12, 13, 15, 17, 22, 23, 25, 27, 32, 33, 35, 37, 42, 43, 45, 47, 52, 53, 55, 57, 62, 63, 65, 67, 72, 73, 75, 77, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 112, 113, 115, 117, 122, 123, 125, 127, 132, 133, 135, 137, 142, 143, 145, 147
Offset: 1
-
a:=n->(5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2; List([1..60],n->a(n)); # Muniru A Asiru, Feb 16 2018
-
[(5*n-4-(-1)^n+((3-(-1)^n) div 2)*(-1)^((2*n+5-(-1)^n) div 4))/2: n in [1..70]]; // Vincenzo Librandi, Jul 18 2015
-
A260181:=n->(5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2: seq(A260181(n), n=1..100);
-
CoefficientList[Series[(2 + x + 2 x^2 + 2 x^3 + 3 x^4)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x]
LinearRecurrence[{1, 0, 0, 1, -1}, {2, 3, 5, 7, 12}, 60] (* Vincenzo Librandi, Jul 18 2015 *)
Table[(5n - 4 - (-1)^n + ((3 - (-1)^n)/2)*(-1)^((2*n + 5 - (-1)^n)/4))/2, {n, 100}] (* Wesley Ivan Hurt, Aug 11 2015 *)
-
is(n)=my(m=digits(n));isprime(m[#m]) \\ Anders Hellström, Jul 19 2015
-
A260181(n)=(n--)\4*10+prime(n%4+1) \\ is(n)=isprime(n%10) is much more efficient than the above. - M. F. Hasler, Sep 16 2016
Showing 1-10 of 27 results.
Comments