cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A063239 Duplicate of A063226.

Original entry on oeis.org

3, 7, 13, 17, 23, 27, 33, 37, 43, 47, 53, 57, 63, 67, 73, 77, 83, 87, 93
Offset: 1

Views

Author

Keywords

A182007 Decimal expansion of 2*sin(Pi/5).

Original entry on oeis.org

1, 1, 7, 5, 5, 7, 0, 5, 0, 4, 5, 8, 4, 9, 4, 6, 2, 5, 8, 3, 3, 7, 4, 1, 1, 9, 0, 9, 2, 7, 8, 1, 4, 5, 5, 3, 7, 1, 9, 5, 3, 0, 4, 8, 7, 5, 2, 8, 6, 2, 9, 1, 9, 8, 2, 1, 4, 4, 5, 4, 4, 9, 6, 1, 5, 1, 4, 5, 5, 6, 9, 4, 8, 3, 2, 4, 7, 0, 3, 9, 1, 5, 0, 1, 7, 0, 0
Offset: 1

Views

Author

Stanislav Sykora, Apr 06 2012

Keywords

Comments

The golden ratio phi is the real part of 2*exp(i*Pi/5), while this constant c is the corresponding imaginary part. It is handy, for example, in simplifying metric expressions for Platonic solids (particularly for regular icosahedron and dodecahedron).
Note that c^2+A001622^2 = 4; c*A001622 = A188593 = 2*A019881; c = 2*A019845.
Edge length of a regular pentagon with unit circumradius. - Stanislav Sykora, May 07 2014
This is a constructible number (see A003401 for more details). Moreover, since phi is also constructible, (2^k)*exp(i*Pi/5), for any integer k, is a constructible complex number. - Stanislav Sykora, May 02 2016
rms(c, phi) := sqrt((c^2+phi^2)/2) = sqrt(2) = A002193.

Examples

			1.1755705045849462583374119...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 2*Sin(Pi(R)/5); // G. C. Greubel, Nov 02 2018
  • Maple
    evalf(2*sin(Pi/5),100); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    RealDigits[2*Sin[Pi/5],10,120][[1]] (* Harvey P. Dale, Sep 29 2012 *)
  • PARI
    2*sin(Pi/5) \\ Stanislav Sykora, May 02 2016
    

Formula

Equals sqrt(3-phi).
Equals sqrt((5-sqrt(5))/2). - Jean-François Alcover, May 21 2013
Equals Product_{k>=0} ((10*k + 4)*(10*k + 6))/((10*k + 3)*(10*k + 7)). - Antonio Graciá Llorente, Mar 25 2024
Equals Product_{k>=1} (1 - (-1)^k/A063226(k)). - Amiram Eldar, Nov 23 2024
Equals 2*A019845 = 1/A300074. - Hugo Pfoertner, Nov 23 2024

A090298 Permutation of natural numbers generated by 5-row array shown below.

Original entry on oeis.org

1, 9, 2, 11, 8, 3, 19, 12, 7, 4, 21, 18, 13, 6, 5, 29, 22, 17, 14, 10, 31, 28, 23, 16, 15, 39, 32, 27, 24, 20, 41, 38, 33, 26, 25, 49, 42, 37, 34, 30, 51, 48, 43, 36, 35, 59, 52, 47, 44, 40, 61, 58, 53, 46, 45, 69, 62, 57, 54, 50, 71, 68, 63, 56, 55, 79, 72, 67, 64, 60, 81, 78
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 25 2004

Keywords

Comments

1 9 11 19 21 29 31 39... (A090771)
2 8 12 18 22 28 32 38... (A090772)
3 7 13 17 23 27 33 37... (A063226)
4 6 14 16 24 26 34 36... (A090773)
5 10 15 20 25 30 35 40... (A008587, excluding initial term)
-----------------------------------------------------------
For such arrays A_k, here A_5, see a W. Lang comment on A113807, the A_7 case. However, in order to obtain A_5 one should take the last row as the first one after adding a 0 in front (thus getting a permutation of the nonnegative integers). - Wolfdieter Lang, Feb 02 2012

Crossrefs

Extensions

More terms from Ray Chandler, Feb 01 2004

A019934 Decimal expansion of tangent of 36 degrees.

Original entry on oeis.org

7, 2, 6, 5, 4, 2, 5, 2, 8, 0, 0, 5, 3, 6, 0, 8, 8, 5, 8, 9, 5, 4, 6, 6, 7, 5, 7, 4, 8, 0, 6, 1, 8, 7, 4, 9, 6, 1, 6, 0, 9, 2, 3, 9, 2, 9, 6, 5, 2, 0, 8, 4, 6, 2, 7, 5, 0, 0, 6, 6, 3, 2, 7, 3, 4, 5, 7, 4, 9, 3, 9, 1, 8, 4, 5, 6, 8, 3, 0, 8, 8, 4, 2, 0, 5, 7, 7, 5, 2, 2, 2, 1, 6, 1, 4, 0, 0, 9, 1
Offset: 0

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 54 degrees. - Mohammad K. Azarian, Jun 30 2013
A quartic integer. - Charles R Greathouse IV, Aug 27 2017

Examples

			0.72654252800536088589546675748061874961609239296520...
		

Crossrefs

Programs

Formula

This number is sqrt(5-2*sqrt(5)). This number * A019970 = sqrt(5) = A002163. - R. J. Mathar, Jun 18 2006
The smallest positive solution of cos(4*arctan(x)) = cos(6*arctan(x)). - Thomas Olson, Oct 03 2014
Let r(n) = (n - 1)/(n + 1) if n mod 4 = 1, (n + 1)/(n - 1) otherwise; then this constant (A019934) equals with Product_{n>=0} r(10*n+5) = (2/3) * (8/7) * (12/13) * (18/17) * ... - Dimitris Valianatos, Sep 14 2019
Equals Product_{k>=1} (1 + (-1)^k/A063226(k)). - Amiram Eldar, Nov 23 2024
Equals 1/A019952. - Hugo Pfoertner, Nov 23 2024
tan(Pi/5) = A019845 / A019863. - R. J. Mathar, Aug 31 2025
Smallest positive of the 4 real-valued roots of x^4-10*x^2+5=0. (Other A019970). - R. J. Mathar, Aug 31 2025

A273374 Squares ending in digit 9.

Original entry on oeis.org

9, 49, 169, 289, 529, 729, 1089, 1369, 1849, 2209, 2809, 3249, 3969, 4489, 5329, 5929, 6889, 7569, 8649, 9409, 10609, 11449, 12769, 13689, 15129, 16129, 17689, 18769, 20449, 21609, 23409, 24649, 26569, 27889, 29929, 31329, 33489, 34969, 37249, 38809
Offset: 1

Views

Author

Vincenzo Librandi, May 21 2016

Keywords

Comments

A quasipolynomial of order two and degree two: a(n) = 25n^2 - 30n + 9 if n is even and 25n^2 - 20n + 4 if n is odd. - Charles R Greathouse IV, Nov 03 2021

Crossrefs

Cf. A017377 (numbers ending in 9), A017379 (cubes ending in 9).
Cf. similar sequences listed in A273373.

Programs

  • Magma
    /* By definition: */ [n^2: n in [0..200] | Modexp(n,2,10) eq 9];
    
  • Magma
    [6+(50*(n-1)*n-5*(2*n-1)*(-1)^n+1)/2: n in [1..50]];
    
  • Mathematica
    Table[6 + (50 (n - 1) n - 5 (2 n - 1) (-1)^n + 1)/2, {n, 1, 50}]
  • PARI
    a(n)=(5*n-3+n%2)^2 \\ Charles R Greathouse IV, Nov 03 2021

Formula

G.f.: x*(9 + 40*x + 102*x^2 + 40*x^3 + 9*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = 6 + (50*(n-1)*n - 5*(2*n-1)*(-1)^n + 1)/2.
a(n) = A063226(n)^2. - Seiichi Manyama, May 25 2016
Sum_{n>=1} 1/a(n) = Pi^2*(3-sqrt(5))/50. - Amiram Eldar, Feb 16 2023

Extensions

Corrected and extended by Bruno Berselli, May 21 2016

A322490 Numbers k such that k^k ends with 7.

Original entry on oeis.org

3, 17, 23, 37, 43, 57, 63, 77, 83, 97, 103, 117, 123, 137, 143, 157, 163, 177, 183, 197, 203, 217, 223, 237, 243, 257, 263, 277, 283, 297, 303, 317, 323, 337, 343, 357, 363, 377, 383, 397, 403, 417, 423, 437, 443, 457, 463, 477, 483, 497, 503, 517, 523, 537, 543, 557, 563
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2018

Keywords

Comments

Equivalently, numbers k such that k and (7^h)^k end with the same digit, where h == 1 (mod 4).
Also, numbers k such that k and (3^h)^k end with the same digit, where h == 3 (mod 4).
Numbers congruent to {3, 17} mod 20. - Amiram Eldar, Feb 27 2023

Crossrefs

Subsequence of A063226, A295009.
Similar sequences are listed in A322489.

Programs

  • GAP
    List([1..70], n -> 10*n+2*(-1)^n-5);
    
  • Julia
    [10*n+2*(-1)^n-5 for n in 1:70] |> println
    
  • Magma
    [10*n+2*(-1)^n-5: n in [1..70]];
    
  • Maple
    select(n->n^n mod 10=7,[$1..563]); # Paolo P. Lava, Dec 18 2018
  • Mathematica
    Table[10 n + 2 (-1)^n - 5, {n, 1, 60}]
    LinearRecurrence[{1,1,-1},{3,17,23},80] (* Harvey P. Dale, Sep 15 2019 *)
  • Maxima
    makelist(10*n+2*(-1)^n-5, n, 1, 70);
    
  • PARI
    apply(A322490(n)=10*n+2*(-1)^n-5, [1..70])
    
  • PARI
    Vec(x*(3 + 14*x + 3*x^2) / ((1 + x)*(1 - x)^2) + O(x^55)) \\ Colin Barker, Dec 13 2018
  • Python
    [10*n+2*(-1)**n-5 for n in range(1, 70)]
    
  • Sage
    [10*n+2*(-1)^n-5 for n in (1..70)]
    

Formula

O.g.f.: x*(3 + 14*x + 3*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: 3 + 2*exp(-x) + 5*(2*x - 1)*exp(x).
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 10*n + 2*(-1)^n - 5. Therefore:
a(n) = 10*n - 7 for odd n;
a(n) = 10*n - 3 for even n.
a(n+2*k) = a(n) + 20*k.
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(7*Pi/20)*Pi/20. - Amiram Eldar, Feb 27 2023

A298360 Numbers congruent to {3, 7, 13, 27} mod 30.

Original entry on oeis.org

3, 7, 13, 27, 33, 37, 43, 57, 63, 67, 73, 87, 93, 97, 103, 117, 123, 127, 133, 147, 153, 157, 163, 177, 183, 187, 193, 207, 213, 217, 223, 237, 243, 247, 253, 267, 273, 277, 283, 297, 303, 307, 313, 327, 333, 337, 343, 357, 363, 367, 373, 387, 393, 397, 403
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 05 2018

Keywords

Comments

For any m >= 0, if F(m) = 2^(2^m) + 1 has a factor of the form b = a(n)*2^k + 1 with even k >= m + 2 and n >= 1, then the cofactor of F(m) is equal to F(m)/b = j*2^k + 1, where j is congruent to 7 mod 10 if n is odd, or j is congruent to 3 mod 10 if n is even. That is, the integer a(n) + j must be divisible by 10.

Examples

			37 belongs to this sequence and d = 37*2^16 + 1 is a divisor of F(9) = 2^(2^9) + 1, so 10 | (37 + (F(9)/d - 1)/2^16).
		

Crossrefs

Subsequence of A063226.

Programs

  • Magma
    [n: n in [0..403] | n mod 30 in {3, 7, 13, 27}];
    
  • Mathematica
    LinearRecurrence[{1, 0, 0, 1, -1}, {3, 7, 13, 27, 33}, 60]
    CoefficientList[ Series[(3 + 4x + 6x^2 + 14x^3 + 3x^4)/((-1 + x)^2 (1 + x + x^2 + x^3)), {x, 0, 54}], x] (* Robert G. Wilson v, Feb 08 2018 *)
    Select[Range[500],MemberQ[{3,7,13,27},Mod[#,30]]&] (* Harvey P. Dale, Nov 15 2024 *)
  • PARI
    Vec(x*(3 + 4*x + 6*x^2 + 14*x^3 + 3*x^4)/((1 + x)*(1 + x^2)*(1 - x)^2 + O(x^55)))

Formula

a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
a(n) = a(n-4) + 30.
G.f.: x*(3 + 4*x + 6*x^2 + 14*x^3 + 3*x^4)/((1 + x)*(1 + x^2)*(1 - x)^2).

A302906 a(0) = 0; for n > 0, a(n) = a(n-1) + 5*n + 4.

Original entry on oeis.org

0, 9, 23, 42, 66, 95, 129, 168, 212, 261, 315, 374, 438, 507, 581, 660, 744, 833, 927, 1026, 1130, 1239, 1353, 1472, 1596, 1725, 1859, 1998, 2142, 2291, 2445, 2604, 2768, 2937, 3111, 3290, 3474, 3663, 3857, 4056, 4260, 4469, 4683, 4902, 5126, 5355, 5589
Offset: 0

Views

Author

J. Stauduhar, Apr 15 2018

Keywords

Comments

In A302717, if we count the terms added from each 4-tuple during each iteration we find that either two or three terms are added: 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, ... where the set of three twos (2, 2, 2) appears with decreasing frequency. a(n) is the index into A302717 where each such set begins.
40*a(n) + 169 is a square, whose square root belongs to A063226 and A063206. - Bruno Berselli, Apr 17 2018

Examples

			In A302717:
with a=9  and b=10, a(20,21,22) are appended;
with a=10 and b=11, a(23,24) are appended;
with a=11 and b=12, a(25,26) are appended;
with a=12 and b=13, a(27,28) are appended;
with a=13 and b=14, a(29,30,31) are appended, so a(2) = 23, because A302717(23) is the start of three consecutively added pairs of terms.
		

Crossrefs

Cf. A302717.

Programs

  • Magma
    [n*(5*n+13)/2: n in [0..60]]; // Vincenzo Librandi, Apr 17 2018
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {0, 9, 23}, 50] (* Vincenzo Librandi, Apr 17 2018 *)
  • PARI
    concat(0, Vec(x*(9 - 4*x) / (1 - x)^3 + O(x^50))) \\ Colin Barker, Apr 16 2018
    

Formula

From Colin Barker, Apr 16 2018: (Start)
G.f.: x*(9 - 4*x)/(1 - x)^3.
a(n) = n*(5*n + 13)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End)

A348491 Positive numbers whose square starts and ends with exactly one 9.

Original entry on oeis.org

3, 97, 303, 307, 313, 953, 957, 963, 967, 973, 977, 983, 987, 993, 3003, 3007, 3013, 3017, 3023, 3027, 3033, 3037, 3043, 3047, 3053, 3057, 3063, 3067, 3073, 3077, 3083, 3087, 3093, 3097, 3103, 3107, 3113, 3117, 3123, 3127, 3133, 3137, 3143, 9487, 9493, 9497, 9503, 9507, 9513, 9517
Offset: 1

Views

Author

Bernard Schott, Nov 02 2021

Keywords

Comments

When a square ends with 9, it ends with only one 9.
From Marius A. Burtea, Nov 02 2021 : (Start)
The sequence is infinite because the numbers 303, 3003, 30003, ..., 3*(10^k + 1), k >= 2, are terms with squares 91809, 9018009, 900180009, 90001800009, ... 9*(10^(2*k) + 2*10^k + 1), k >= 2.
Numbers 97, 967, 9667, 96667, 966667, ..., (29*10^n + 1) / 3, k >= 1, are terms and have no digits 0, because their squares are 9409, 935089, 93450889, 9344508889, 934445088889, ...
Also 963, 9663, 96663, 966663, 9666663, 96666663, ... (29*10^k - 11) / 3, k >= 2, are terms and have no digits 0, because their squares are 927369, 93373569, 9343735569, 934437355569, 93444373555569, 9344443735555569, ... (End)

Examples

			97^2 = 9409, hence 97 is a term.
997^2 = 994009, hence  997 is not a term.
		

Crossrefs

Subsequence of A305719, A063226, and A045863.
Cf. A017377, A045863, A273374 (squares ending with 9).
Similar to: A348487 (k=1), A348488 (k=4), A348489 (k=5), A348490 (k=6), this sequence (k=9).

Programs

  • Magma
    [3] cat [n:n in [4..9600]|Intseq(n*n)[1] eq 9 and Intseq(n*n)[#Intseq(n*n)] eq 9]; // Marius A. Burtea, Nov 02 2021
    
  • Mathematica
    Join[{3}, Select[Range[10, 10^4], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 9 && d[[2]] != 9 &]] (* Amiram Eldar, Nov 02 2021 *)
  • PARI
    isok(k) = my(d=digits(sqr(k))); (d[1]==9) && (d[#d]==9) && if (#d>2, (d[2]!=9) && (d[#d-1]!=9), 1); \\ Michel Marcus, Nov 03 2021
    
  • PARI
    list(lim)=my(v=List([3])); for(d=2, 2*#digits(lim\=1), my(s=sqrtint(9*10^(d-1)-1)+1); s+=[3,2,1,0,3,2,1,0,5,4][s%10+1]; forstep(n=s, min(sqrtint(10^d-10^(d-2)-1), lim), if(s%10==3, [4,6], [6,4]), listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Nov 03 2021
  • Python
    from itertools import count, takewhile
    def ok(n):
      s = str(n*n); return len(s.rstrip("9")) == len(s.lstrip("9")) == len(s)-1
    def aupto(N):
      r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [3, 7]))
      return [k for k in r if ok(k)]
    print(aupto(9517)) # Michael S. Branicky, Nov 02 2021
    

A226138 Numbers k such that k^2 = (2i+1)^2 + (2j+1)^2 - 1, where i <= j and i,j > 0, retaining multiples of same k obtained from different i, j combinations.

Original entry on oeis.org

7, 13, 17, 21, 23, 27, 31, 33, 37, 41, 43, 43, 47, 47, 47, 53, 55, 57, 57, 57, 63, 67, 73, 73, 73, 75, 77, 81, 83, 83, 83, 87, 89, 91, 93, 93, 97, 99, 99, 103, 105, 107, 107, 109, 111, 113, 115, 117, 119, 123, 123, 123, 125, 127, 129, 133, 133, 133, 135, 137, 143, 143, 147, 149
Offset: 1

Views

Author

Richard R. Forberg, May 27 2013

Keywords

Comments

At i = 0 and at j = 0 solutions include all odd numbers, so these have not been listed above, but the full table (for all i,j) is considered for patterns later below.
If we exclude multiples of the same k in the listed sequence it equals A180263, which uses a different set of criteria related to nonprimes.
The results may be viewed as a "distance" from a point on the real x-y plane to the imaginary point sqrt(-1) on a complex z-axis (or plane).
These results occur in a number of infinite and branching "subsequences" with distinct but usually simple patterns that are discernible when viewing the triangle. The main subsequence (#1) begins at value 3. Other subsequences branch off from it. Patterns are evident in both the values of results (by examining differences) and in their i and j positions. Example subsequences are numbered in the order of lowest value for their starting terms:
Subseq #1: 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133, 157, 183, etc.
Subseq #2: 7, 13, 17, 23, 27, 33, 37, 43, 47, 53, 57, 63, 67, 73, etc.
Subseq #3: 7, 41, 75, 99, 133, 157, 191, 215, 249, 273, 307, etc.
Subseq #4: 13, 21, 47, 55, 81, 89, 115, 123, 149, 157, 183, 191, etc.
Subseq #5: 17, 23, 47, 57, 93, 107, 155, 173, 233, 255, 327, 353, etc.
Subseq #6: 21, 31, 47, 57, 73, 83, 99, 109, 125, 135, 151, 161, etc.
Subsequence #1 conforms to A002061 (when excluding its two initial 1's) with the 3 at i=1, j=0 (on other side of diagonal). Subsequence #2 conforms to A063226, when excluding its initial term 3. The other examples given are not in the OEIS currently.
Branching can be seen as follows: subsequence #3 starts on the diagonal at i,j = 2 and it branches off #1 (or #2). Subsequence #4 branches off #1. Subsequence #5 branches off of #2. Subsequence #6 branches off #1. Subsequence #5 and #6 cross over each other, at (47,57) which occurs at the same i,j, values.
The full set of odd numbers along the axes for i,j = 0, in all four quadrants are also simple patterns.
Additional subsequences are spawned at higher values of i and j, apparently without end, evoking the appearance of linear and curved fractals. It is NOT clear whether all instances of k occur in such infinite subsequences.
Results are prolific because of the -1 in the equation. Without it (i.e., using only Pythagorean distance) there are no integer solutions for k with two odd legs to the triangle. Though certain other constants (added or subtracted) produce multiple obvious subsequences as well.

Examples

			7 is a term because 7^2 = 5^2 + 5^2 - 1.
13 is a term because 13^2 = 7^2 + 11^2 - 1.
		
Showing 1-10 of 11 results. Next