A063239 Duplicate of A063226.
3, 7, 13, 17, 23, 27, 33, 37, 43, 47, 53, 57, 63, 67, 73, 77, 83, 87, 93
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
1.1755705045849462583374119...
SetDefaultRealField(RealField(100)); R:= RealField(); 2*Sin(Pi(R)/5); // G. C. Greubel, Nov 02 2018
evalf(2*sin(Pi/5),100); # Muniru A Asiru, Nov 02 2018
RealDigits[2*Sin[Pi/5],10,120][[1]] (* Harvey P. Dale, Sep 29 2012 *)
2*sin(Pi/5) \\ Stanislav Sykora, May 02 2016
0.72654252800536088589546675748061874961609239296520...
RealDigits[Tan[36 Degree],10,120][[1]] (* Harvey P. Dale, Nov 06 2012 *)
tan(Pi/5) \\ Charles R Greathouse IV, Aug 27 2017
/* By definition: */ [n^2: n in [0..200] | Modexp(n,2,10) eq 9];
[6+(50*(n-1)*n-5*(2*n-1)*(-1)^n+1)/2: n in [1..50]];
Table[6 + (50 (n - 1) n - 5 (2 n - 1) (-1)^n + 1)/2, {n, 1, 50}]
a(n)=(5*n-3+n%2)^2 \\ Charles R Greathouse IV, Nov 03 2021
List([1..70], n -> 10*n+2*(-1)^n-5);
[10*n+2*(-1)^n-5 for n in 1:70] |> println
[10*n+2*(-1)^n-5: n in [1..70]];
select(n->n^n mod 10=7,[$1..563]); # Paolo P. Lava, Dec 18 2018
Table[10 n + 2 (-1)^n - 5, {n, 1, 60}] LinearRecurrence[{1,1,-1},{3,17,23},80] (* Harvey P. Dale, Sep 15 2019 *)
makelist(10*n+2*(-1)^n-5, n, 1, 70);
apply(A322490(n)=10*n+2*(-1)^n-5, [1..70])
Vec(x*(3 + 14*x + 3*x^2) / ((1 + x)*(1 - x)^2) + O(x^55)) \\ Colin Barker, Dec 13 2018
[10*n+2*(-1)**n-5 for n in range(1, 70)]
[10*n+2*(-1)^n-5 for n in (1..70)]
37 belongs to this sequence and d = 37*2^16 + 1 is a divisor of F(9) = 2^(2^9) + 1, so 10 | (37 + (F(9)/d - 1)/2^16).
[n: n in [0..403] | n mod 30 in {3, 7, 13, 27}];
LinearRecurrence[{1, 0, 0, 1, -1}, {3, 7, 13, 27, 33}, 60] CoefficientList[ Series[(3 + 4x + 6x^2 + 14x^3 + 3x^4)/((-1 + x)^2 (1 + x + x^2 + x^3)), {x, 0, 54}], x] (* Robert G. Wilson v, Feb 08 2018 *) Select[Range[500],MemberQ[{3,7,13,27},Mod[#,30]]&] (* Harvey P. Dale, Nov 15 2024 *)
Vec(x*(3 + 4*x + 6*x^2 + 14*x^3 + 3*x^4)/((1 + x)*(1 + x^2)*(1 - x)^2 + O(x^55)))
In A302717: with a=9 and b=10, a(20,21,22) are appended; with a=10 and b=11, a(23,24) are appended; with a=11 and b=12, a(25,26) are appended; with a=12 and b=13, a(27,28) are appended; with a=13 and b=14, a(29,30,31) are appended, so a(2) = 23, because A302717(23) is the start of three consecutively added pairs of terms.
[n*(5*n+13)/2: n in [0..60]]; // Vincenzo Librandi, Apr 17 2018
LinearRecurrence[{3, -3, 1}, {0, 9, 23}, 50] (* Vincenzo Librandi, Apr 17 2018 *)
concat(0, Vec(x*(9 - 4*x) / (1 - x)^3 + O(x^50))) \\ Colin Barker, Apr 16 2018
97^2 = 9409, hence 97 is a term. 997^2 = 994009, hence 997 is not a term.
[3] cat [n:n in [4..9600]|Intseq(n*n)[1] eq 9 and Intseq(n*n)[#Intseq(n*n)] eq 9]; // Marius A. Burtea, Nov 02 2021
Join[{3}, Select[Range[10, 10^4], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 9 && d[[2]] != 9 &]] (* Amiram Eldar, Nov 02 2021 *)
isok(k) = my(d=digits(sqr(k))); (d[1]==9) && (d[#d]==9) && if (#d>2, (d[2]!=9) && (d[#d-1]!=9), 1); \\ Michel Marcus, Nov 03 2021
list(lim)=my(v=List([3])); for(d=2, 2*#digits(lim\=1), my(s=sqrtint(9*10^(d-1)-1)+1); s+=[3,2,1,0,3,2,1,0,5,4][s%10+1]; forstep(n=s, min(sqrtint(10^d-10^(d-2)-1), lim), if(s%10==3, [4,6], [6,4]), listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Nov 03 2021
from itertools import count, takewhile def ok(n): s = str(n*n); return len(s.rstrip("9")) == len(s.lstrip("9")) == len(s)-1 def aupto(N): r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [3, 7])) return [k for k in r if ok(k)] print(aupto(9517)) # Michael S. Branicky, Nov 02 2021
7 is a term because 7^2 = 5^2 + 5^2 - 1. 13 is a term because 13^2 = 7^2 + 11^2 - 1.
Comments