cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A019952 Decimal expansion of tangent of 54 degrees.

Original entry on oeis.org

1, 3, 7, 6, 3, 8, 1, 9, 2, 0, 4, 7, 1, 1, 7, 3, 5, 3, 8, 2, 0, 7, 2, 0, 9, 5, 8, 1, 9, 1, 0, 8, 8, 7, 6, 7, 9, 5, 2, 5, 8, 9, 9, 3, 3, 6, 0, 0, 8, 1, 5, 8, 6, 6, 3, 3, 6, 5, 6, 7, 5, 7, 6, 5, 6, 1, 9, 0, 9, 5, 1, 9, 3, 7, 6, 7, 1, 7, 2, 9, 8, 5, 0, 6, 5, 9, 5, 2, 9, 9, 3, 1, 1, 0, 0, 7, 0, 1, 9
Offset: 1

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 36 degrees. - Mohammad K. Azarian, Jun 30 2013
A quartic number with denominator 5. - Charles R Greathouse IV, Aug 27 2017
Conjecture: Product (2/3) * (8/7) * (12/13) * (18/17) * (22/23) * (32/33) * ... * (a_n/b_n) = sqrt(25 + 10*sqrt(5))/5 = tan(3*Pi/10) = A019952, where a_n even, a_n + b_n = a(n), |a_n - b_n| = 1, n >= 0. - Dimitris Valianatos, Feb 14 2020
Also the limiting value of the distance between the lines F(n)*x + F(n+1)*y = 0 and F(n)*x + F(n+1)*y = F(n+2) (where F(n)=A000045(n) are the Fibonacci numbers and n>0). - Burak Muslu, Apr 03 2021
Decimal expansion of the radius of an inscribed sphere in a rhombic triacontahedron with unit edge length. - Wesley Ivan Hurt, May 11 2021

Examples

			1.376381920471173538207209581910887679525899336...
		

Crossrefs

Cf. A344171 (rhombic triacontahedron surface area).
Cf. A344172 (rhombic triacontahedron volume).
Cf. A344212 (rhombic triacontahedron midradius).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(3*Pi(R)/10); // G. C. Greubel, Nov 22 2018
    
  • Maple
    Digits:=100: evalf(tan(3*Pi/10)); # Wesley Ivan Hurt, Oct 07 2014
  • Mathematica
    RealDigits[Tan[3*Pi/10], 10, 100][[1]] (* Wesley Ivan Hurt, Oct 07 2014 *)
    RealDigits[Tan[54 Degree],10,120][[1]] (* Harvey P. Dale, Jul 16 2016 *)
  • PARI
    tan(3*Pi/10) \\ Charles R Greathouse IV, Aug 27 2017
    
  • Python
    from sympy import sqrt
    [print(i, end=', ') for i in str(sqrt(1+2/sqrt(5)).n(110)) if i!='.'] # Karl V. Keller, Jr., Jun 19 2020
  • Sage
    numerical_approx(tan(3*pi/10), digits=100) # G. C. Greubel, Nov 22 2018
    

Formula

Equals A019863/A019845 = 1/A019934. - R. J. Mathar, Jul 26 2010
The largest positive solution of cos(4*arctan(1/x)) = cos(6*arctan(1/x)). - Thomas Olson, Oct 03 2014
Equals sqrt(25 + 10*sqrt(5))/5. - G. C. Greubel, Nov 22 2018
Equals sqrt(2 + sqrt(5))/5^(1/4). - Burak Muslu, Apr 03 2021
From Wesley Ivan Hurt, May 11 2021: (Start)
Equals phi^2/sqrt(1+phi^2) where phi is the golden ratio.
Equals sqrt(1+2/sqrt(5)). (End)
Equals Product_{k>=1} (1 - (-1)^k/A090772(k)). - Amiram Eldar, Nov 23 2024
Equals 2*A375067. - Hugo Pfoertner, Nov 23 2024

A019970 Decimal expansion of tangent of 72 degrees.

Original entry on oeis.org

3, 0, 7, 7, 6, 8, 3, 5, 3, 7, 1, 7, 5, 2, 5, 3, 4, 0, 2, 5, 7, 0, 2, 9, 0, 5, 7, 6, 0, 3, 6, 9, 0, 9, 8, 2, 4, 0, 0, 6, 7, 0, 2, 1, 4, 3, 5, 3, 7, 7, 9, 2, 4, 2, 7, 0, 3, 9, 1, 5, 6, 2, 5, 0, 3, 7, 4, 8, 6, 3, 2, 8, 8, 4, 9, 5, 0, 9, 0, 9, 1, 8, 4, 5, 4, 5, 9, 3, 7, 2, 1, 6, 6, 7, 1, 0, 5, 4, 3
Offset: 1

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 18 degrees. - Mohammad K. Azarian, Jun 30 2013
A quartic integer. - Charles R Greathouse IV, Aug 27 2017
Length of the second longest diagonal in a regular 10-gon with unit side. - Mohammed Yaseen, Nov 12 2020

Examples

			tan(2*Pi/5) = 3.077683537175253402570290576036909824006702143537792427...
		

Crossrefs

Cf. A019881 (sine of 72 degrees).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(5+2*Sqrt(5)); // G. C. Greubel, Nov 21 2018
    
  • Mathematica
    RealDigits[Tan[72 Degree],10,120][[1]] (* Harvey P. Dale, Apr 30 2012 *)
    RealDigits[Sqrt[5 + 2*Sqrt[5]], 10, 100][[1]] (* G. C. Greubel, Nov 21 2018 *)
  • PARI
    tan(2*Pi/5) \\ Charles R Greathouse IV, Aug 27 2017
    
  • Sage
    numerical_approx(tan(2*pi/5), digits=100) # G. C. Greubel, Nov 21 2018

Formula

Equals sqrt(5 + 2*sqrt(5)). - R. J. Mathar, Jun 18 2006
Equals tan(66 degrees) + tan(36 degrees) + tan(6 degrees). - Amiram Eldar, Apr 07 2022
Largest positive of the 4 real-valued roots of x^4-10*x^2+5=0. - R. J. Mathar, Aug 31 2025

A063226 Dimension of the space of weight 2n cuspidal newforms for Gamma_0(63).

Original entry on oeis.org

3, 7, 13, 17, 23, 27, 33, 37, 43, 47, 53, 57, 63, 67, 73, 77, 83, 87, 93, 97, 103, 107, 113, 117, 123, 127, 133, 137, 143, 147, 153, 157, 163, 167, 173, 177, 183, 187, 193, 197, 203, 207, 213, 217, 223, 227, 233, 237, 243, 247
Offset: 1

Views

Author

N. J. A. Sloane, Jul 10 2001

Keywords

Comments

Also, dimension of the space of weight 2n cuspidal newforms for Gamma_0(88). - N. J. A. Sloane, Nov 24 2016
First differences are 4,6,4,6,4,6.... Also values of k such that k^(10*n) mod 10 = 8*(n mod 2)+1. - Gary Detlefs, Jul 04 2014
In other words, numbers n such that n^(2+4*k) + 1 is divisible by 10, for k >= 0. - Altug Alkan, Mar 30 2016
The rational generating function, the periodic first differences and Greubel's closed form are an immediate consequence of the structure of formula given by [Martin]. - R. J. Mathar, Apr 09 2016
A quasipolynomial of order 2 and degree 1: a(n) = 5n - 3 if n is even and 5n - 2 if n is odd. - Charles R Greathouse IV, Nov 03 2021
Numbers that are congruent to {3, 7} mod 10. - Amiram Eldar, Nov 23 2024

Crossrefs

Cf. A017305 (bisection), A017353 (bisection), A019934, A182007.

Programs

  • Maple
    # see A063195
  • Mathematica
    Table[4 Floor[n/2] + 6 Floor[(n - 1)/2] + 3, {n, 50}] (* or *)
    Table[SeriesCoefficient[3 x - x^2 (-7 - 6 x + 3 x^2)/((1 + x) (x - 1)^2), {x, 0, n}], {n, 50}] (* Michael De Vlieger, Mar 30 2016 *)
    LinearRecurrence[{1, 1, -1}, {3, 7, 13}, 100] (* G. C. Greubel, Mar 30 2016 *)
  • PARI
    my(x='x+O('x^99)); Vec(3*x-x^2*(-7-6*x+3*x^2)/((1+x)*(x-1)^2)) \\ Altug Alkan, Mar 31 2016
    
  • PARI
    a(n)=5*n-3+n%2 \\ Charles R Greathouse IV, Mar 31 2016

Formula

a(n) = 4*floor(n/2) + 6*floor((n-1)/2) + 3. - Gary Detlefs, Jul 04 2014
G.f.: 3*x - x^2*(-7-6*x+3*x^2)/((1+x)*(x-1)^2). - R. J. Mathar, Jul 15 2015
From G. C. Greubel, Mar 30 2016: (Start)
a(n) = (1/2)*(10*n - 5 - (-1)^n).
E.g.f.: (5*x + 3)*cosh(x) + (5*x + 2)*sinh(x). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(5-2*sqrt(5))*Pi/10. - Amiram Eldar, Sep 26 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*sin(Pi/5) (A182007).
Product_{n>=1} (1 + (-1)^n/a(n)) = tan(Pi/5) (A019934). (End)

A375067 Decimal expansion of the apothem (inradius) of a regular pentagon with unit side length.

Original entry on oeis.org

6, 8, 8, 1, 9, 0, 9, 6, 0, 2, 3, 5, 5, 8, 6, 7, 6, 9, 1, 0, 3, 6, 0, 4, 7, 9, 0, 9, 5, 5, 4, 4, 3, 8, 3, 9, 7, 6, 2, 9, 4, 9, 6, 6, 8, 0, 0, 4, 0, 7, 9, 3, 3, 1, 6, 8, 2, 8, 3, 7, 8, 8, 2, 8, 0, 9, 5, 4, 7, 5, 9, 6, 8, 8, 3, 5, 8, 6, 4, 9, 2, 5, 3, 2, 9, 7, 6, 4, 9, 6
Offset: 0

Views

Author

Paolo Xausa, Jul 29 2024

Keywords

Examples

			0.688190960235586769103604790955443839762949668...
		

Crossrefs

Cf. A300074 (circumradius), A375068 (sagitta), A102771 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon), A375193 (12-gon).

Programs

Formula

Equals cot(Pi/5)/2 = A019952/2.
Equals 1/(2*tan(Pi/5)) = 1/(2*A019934).
Equals sqrt(1/4 + 1/(2*sqrt(5))).
Equals (1/2)*csc(Pi/5)*cos(Pi/5) = A300074*A019863.
Equals A300074 - A375068.
Equals A131595/30. - Hugo Pfoertner, Jul 30 2024

A165225 a(0)=1, a(1)=5, a(n) = 10*a(n-1) - 5*a(n-2) for n > 1.

Original entry on oeis.org

1, 5, 45, 425, 4025, 38125, 361125, 3420625, 32400625, 306903125, 2907028125, 27535765625, 260822515625, 2470546328125, 23401350703125, 221660775390625, 2099601000390625, 19887706126953125, 188379056267578125
Offset: 0

Views

Author

Philippe Deléham, Sep 09 2009

Keywords

Comments

Sum_{k=1..(m-1)/2} tan^(2n) (k*Pi/m) is an integer when m >= 3 is an odd integer (see AMM and Crux Mathematicorum links); twice this sequence is the particular case m = 5. - Bernard Schott, Apr 25 2022

Crossrefs

Similar with: A000244 (m=3), 2*this sequence (m=5), A108716 (m=7), A353410 (m=9), A275546 (m=11), A353411 (m=13).

Programs

  • Mathematica
    LinearRecurrence[{10,-5},{1,5},30] (* Harvey P. Dale, Dec 23 2019 *)

Formula

Limit_{n->oo} a(n+1)/a(n) = 5 + 2*sqrt(5) = 9.47213595...
G.f.: (1-5x)/(1-10x+5x^2).
a(n) = ((5 - 2*sqrt(5))^n + (5 + 2*sqrt(5))^n)/2. - Klaus Brockhaus, Sep 25 2009
a(n) = (tan(Pi/5)^(2*n) + tan(2*Pi/5)^(2*n))/2 (Smeenk, 2009). - Amiram Eldar, Apr 03 2022

Extensions

More terms from Klaus Brockhaus, Sep 25 2009

A190987 a(n) = 10*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 10, 95, 900, 8525, 80750, 764875, 7245000, 68625625, 650031250, 6157184375, 58321687500, 552430953125, 5232701093750, 49564856171875, 469485056250000, 4447026281640625, 42122837535156250, 398993243943359375, 3779318251757812500, 35798216297861328125
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A190958 (index to generalized Fibonacci sequences).
Cf. A019934 (sqrt(5-2*sqrt(5))), A019952 (sqrt(5+2*sqrt(5))).

Programs

  • Magma
    [Round(5^((n-1)/2)*Evaluate(ChebyshevU(n), Sqrt(5))): n in [0..30]]; // G. C. Greubel, Sep 07 2022
    
  • Mathematica
    LinearRecurrence[{10,-5}, {0,1}, 50]
  • SageMath
    A190987 = BinaryRecurrenceSequence(10, -5, 0, 1)
    [A190987(n) for n in (0..30)] # G. C. Greubel, Sep 07 2022

Formula

G.f.: x/(1 - 10*x + 5*x^2). - Philippe Deléham, Oct 12 2011
E.g.f.: (1/(2*sqrt(5)))*exp(5*x)*sinh(2*sqrt(5)*x). - G. C. Greubel, Sep 07 2022

A343057 Decimal expansion of tan(Pi/32).

Original entry on oeis.org

0, 9, 8, 4, 9, 1, 4, 0, 3, 3, 5, 7, 1, 6, 4, 2, 5, 3, 0, 7, 7, 1, 9, 7, 5, 2, 1, 2, 9, 1, 3, 2, 7, 4, 3, 2, 2, 9, 3, 0, 5, 2, 4, 5, 0, 6, 9, 9, 2, 0, 2, 6, 9, 5, 9, 8, 0, 9, 1, 6, 1, 2, 1, 1, 3, 4, 4, 1, 9, 4, 3, 8, 7, 3, 0, 8, 1, 2, 9, 7, 2, 2, 5, 6, 4, 8, 5, 2, 1, 4, 1, 8, 0, 3, 7, 3, 6, 0, 0, 1, 3, 7, 0, 6, 7, 1, 6, 9, 7, 7, 9, 1, 7, 6, 5
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.098491403357164253077197...
		

Crossrefs

Cf. A343055 (sin(Pi/32)), A343056 (cos(Pi/32)).
tan(Pi/m): A002194 (m=3), A019934 (m=5), A020760 (m=6), A343058 (m=7), A188582 (m=8), A019918 (m=9), A019916 (m=10), A019913 (m=12), A343059 (m=14), A019910 (m=15), A343060 (m=16), A343061 (m=17), A019908 (m=18), A019907 (m=20), A343062 (m=24), A019904 (m=30), A343057 (m=32), A019903 (m=36).

Programs

  • Magma
    R:= RealField(125); Tan(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Tan[Pi/32], 10, 120, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/32)
    
  • PARI
    sqrt((2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))))
    
  • SageMath
    numerical_approx(tan(pi/32), digits=125) # G. C. Greubel, Sep 30 2022

Formula

Equals sqrt( (2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))) ).

A357715 Decimal expansion of sqrt(16 + 32 / sqrt(5)).

Original entry on oeis.org

5, 5, 0, 5, 5, 2, 7, 6, 8, 1, 8, 8, 4, 6, 9, 4, 1, 5, 2, 8, 2, 8, 8, 3, 8, 3, 2, 7, 6, 4, 3, 5, 5, 0, 7, 1, 8, 1, 0, 3, 5, 9, 7, 3, 4, 4, 0, 3, 2, 6, 3, 4, 6, 5, 3, 4, 6, 2, 7, 0, 3, 0, 6, 2, 4, 7, 6, 3, 8, 0, 7, 7, 5, 0, 6, 8, 6, 9, 1, 9, 4, 0, 2, 6, 3, 8, 1, 1, 9, 7, 2, 4, 4, 0, 2, 8, 0
Offset: 1

Views

Author

Michal Paulovic, Oct 10 2022

Keywords

Comments

The perimeter of a golden rectangle inscribed in a unit circle.
The width and height of the rectangle are:
W = sqrt(2 - 2 / sqrt(5)) = A179290.
H = sqrt(2 + 2 / sqrt(5)) = A121570.

Examples

			5.5055276818846941...
		

Crossrefs

Programs

  • Maple
    sqrt(16 + 32 / sqrt(5));
  • Mathematica
    Sqrt[16 + 32/Sqrt[5]]
  • PARI
    sqrt(16 + 32 / sqrt(5))

Formula

Equals (4 / sqrt(5)) * sqrt(5 + 2 * sqrt(5)) = A356869 * A019970.
Equals sqrt(5 + 2 * sqrt(5)) / (sqrt(5) / 4) = A019970 / A204188.
Equals 4 * sqrt(1 + 2 / sqrt(5)) = 4 * A019952.
Equals 4 / sqrt(5 - 2 * sqrt(5)) = 4 / A019934.
Showing 1-8 of 8 results.