cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A022521 a(n) = (n+1)^5 - n^5.

Original entry on oeis.org

1, 31, 211, 781, 2101, 4651, 9031, 15961, 26281, 40951, 61051, 87781, 122461, 166531, 221551, 289201, 371281, 469711, 586531, 723901, 884101, 1069531, 1282711, 1526281, 1803001, 2115751, 2467531
Offset: 0

Views

Author

Keywords

Comments

Last digit of a(n) is always 1. Last two digits of a(n) (i.e., a(n) mod 100) are repeated periodically with palindromic part of period 20 {1,31,11,81,1,51,31,61,81,51,51,81,61,31,51,1,81,11,31,1}. Last three digits of a(n) (i.e., a(n) mod 1000) are repeated periodically with palindromic part of period 200. - Alexander Adamchuk, Aug 11 2006
In Conway and Guy, these numbers are called nexus numbers of order 5. - M. F. Hasler, Jan 27 2013
Numbers that can be arranged in a triangular-antitegmatic icosachoron (the 4D version of "rhombic dodecahedal numbers" (A005917)). - Steven Lu, Mar 28 2023

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

First differences of A000584.
Column k=4 of array A047969.

Programs

Formula

a(n) = A003215(n) + 24 * A006322(n). - Xavier Acloque, Oct 11 2003
G.f.: (-1-x^4-26*x^3-66*x^2-26*x)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
G.f.: polylog(-5, x)*(1-x)/x. See the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021
Sum_{n>=0} 1/a(n) = c1*tanh(c2/2) - c2*tanh(c1/2), where c1 = tan(3*Pi/10)*Pi and c2 = tan(Pi/10)*Pi. - Amiram Eldar, Jan 27 2022

A033571 a(n) = (2*n + 1)*(5*n + 1).

Original entry on oeis.org

1, 18, 55, 112, 189, 286, 403, 540, 697, 874, 1071, 1288, 1525, 1782, 2059, 2356, 2673, 3010, 3367, 3744, 4141, 4558, 4995, 5452, 5929, 6426, 6943, 7480, 8037, 8614, 9211, 9828, 10465, 11122, 11799, 12496, 13213, 13950, 14707, 15484, 16281, 17098, 17935, 18792, 19669, 20566, 21483
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 18, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. This is one of the diagonals in the spiral. - Omar E. Pol, Sep 10 2011
Also sequence found by reading the line from 1, in the direction 1, 18, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is a line perpendicular to the main axis A195015 in the same spiral. - Omar E. Pol, Oct 14 2011

Crossrefs

Programs

Formula

a(n) = A153126(2*n) = A000566(2*n+1). - Reinhard Zumkeller, Dec 20 2008
From Reinhard Zumkeller, Mar 13 2009: (Start)
a(n) = A008596(n) + A158186(n), for n > 0.
a(n) = A010010(n) - A158186(n). (End)
a(n) = a(n-1) + 20*n - 3 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 15*x + 4*x^2)/(1-x)^3.
E.g.f.: (1 + 17*x + 10*x^2)*exp(x). (End)
a(n) = A003154(n+1) + A007742(n). - Leo Tavares, Mar 27 2022
Sum_{n>=0} 1/a(n) = sqrt(1+2/sqrt(5))*Pi/6 + sqrt(5)*log(phi)/6 + 5*log(5)/12 - 2*log(2)/3, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 23 2022

Extensions

Terms a(36) onward added by G. C. Greubel, Oct 12 2019

A344212 Decimal expansion of 1 + 1/sqrt(5).

Original entry on oeis.org

1, 4, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8, 2, 8, 8, 1, 6, 7
Offset: 1

Views

Author

Wesley Ivan Hurt, May 11 2021

Keywords

Comments

Decimal expansion of the midradius of a rhombic triacontahedron with unit edge length.
Essentially the same sequence of digits as A176453, A134974, A020762 and A010476. - R. J. Mathar, May 16 2021

Examples

			1.447213595499957939281834733746255247088123671922305...
		

Crossrefs

Cf. A019952 (rhombic triacontahedron inscribed sphere radius).
Cf. A344171 (rhombic triacontahedron surface area).
Cf. A344172 (rhombic triacontahedron volume).

Programs

Formula

From Amiram Eldar, Nov 28 2024: (Start)
Equals 2*A242671 = 1/A187798.
Equals Product_{k>=0} (1 + 1/A081005(k)). (End)

A019934 Decimal expansion of tangent of 36 degrees.

Original entry on oeis.org

7, 2, 6, 5, 4, 2, 5, 2, 8, 0, 0, 5, 3, 6, 0, 8, 8, 5, 8, 9, 5, 4, 6, 6, 7, 5, 7, 4, 8, 0, 6, 1, 8, 7, 4, 9, 6, 1, 6, 0, 9, 2, 3, 9, 2, 9, 6, 5, 2, 0, 8, 4, 6, 2, 7, 5, 0, 0, 6, 6, 3, 2, 7, 3, 4, 5, 7, 4, 9, 3, 9, 1, 8, 4, 5, 6, 8, 3, 0, 8, 8, 4, 2, 0, 5, 7, 7, 5, 2, 2, 2, 1, 6, 1, 4, 0, 0, 9, 1
Offset: 0

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 54 degrees. - Mohammad K. Azarian, Jun 30 2013
A quartic integer. - Charles R Greathouse IV, Aug 27 2017

Examples

			0.72654252800536088589546675748061874961609239296520...
		

Crossrefs

Programs

Formula

This number is sqrt(5-2*sqrt(5)). This number * A019970 = sqrt(5) = A002163. - R. J. Mathar, Jun 18 2006
The smallest positive solution of cos(4*arctan(x)) = cos(6*arctan(x)). - Thomas Olson, Oct 03 2014
Let r(n) = (n - 1)/(n + 1) if n mod 4 = 1, (n + 1)/(n - 1) otherwise; then this constant (A019934) equals with Product_{n>=0} r(10*n+5) = (2/3) * (8/7) * (12/13) * (18/17) * ... - Dimitris Valianatos, Sep 14 2019
Equals Product_{k>=1} (1 + (-1)^k/A063226(k)). - Amiram Eldar, Nov 23 2024
Equals 1/A019952. - Hugo Pfoertner, Nov 23 2024
tan(Pi/5) = A019845 / A019863. - R. J. Mathar, Aug 31 2025
Smallest positive of the 4 real-valued roots of x^4-10*x^2+5=0. (Other A019970). - R. J. Mathar, Aug 31 2025

A200135 Decimal expansion of the negated value of the digamma function at 1/5.

Original entry on oeis.org

5, 2, 8, 9, 0, 3, 9, 8, 9, 6, 5, 9, 2, 1, 8, 8, 2, 9, 5, 5, 4, 7, 2, 0, 7, 9, 6, 2, 4, 4, 9, 9, 5, 2, 1, 0, 4, 8, 2, 5, 5, 8, 8, 2, 7, 4, 2, 0, 6, 6, 4, 2, 8, 1, 0, 1, 7, 5, 8, 5, 8, 6, 6, 4, 1, 9, 1, 6, 2, 4, 7, 5, 4, 0, 9, 1, 6, 1, 9, 6, 5, 2, 5, 4, 6, 5, 7, 7, 8, 2, 4, 3, 1, 9, 5, 7, 0, 3, 6, 2, 4, 1, 2, 4, 0
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(1/5) =  -5.289039896592188295547207962...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -EulerGamma(R) -Pi(R)*Sqrt(1+2/Sqrt(5))/2 -5*Log(5)/4 -Sqrt(5)/4*Log((3+Sqrt(5)/2) ); // G. C. Greubel, Sep 03 2018
  • Maple
    -gamma-Pi*sqrt(1+2/sqrt(5))/2-5*log(5)/4-sqrt(5)/4*log((3+sqrt(5)/2) ); evalf(%) ;
  • Mathematica
    RealDigits[-PolyGamma[1/5], 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    -psi(1/5) \\ Charles R Greathouse IV, Jul 19 2013
    

Formula

Psi(1/5) = -gamma - Pi*sqrt(1 + 2/sqrt(5))/2 - 5*log(5)/4 -sqrt(5)*log((3 + sqrt(5))/2)/4 where gamma = A001620, sqrt(1 + 2/sqrt(5)) = A019952, (3 + sqrt(5))/2 = A104457.

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A237603 Decimal expansion of the inscribed sphere radius in a regular dodecahedron with unit edge.

Original entry on oeis.org

1, 1, 1, 3, 5, 1, 6, 3, 6, 4, 4, 1, 1, 6, 0, 6, 7, 3, 5, 1, 9, 4, 3, 7, 5, 0, 3, 9, 4, 8, 6, 9, 4, 9, 3, 7, 5, 8, 8, 3, 1, 5, 0, 3, 6, 9, 8, 8, 6, 4, 8, 7, 7, 7, 2, 6, 0, 1, 2, 0, 8, 0, 0, 3, 9, 9, 8, 4, 8, 9, 6, 2, 0, 5, 6, 5, 5, 6, 5, 9, 7, 5, 8, 8
Offset: 1

Views

Author

Stanislav Sykora, Feb 25 2014

Keywords

Comments

Equals phi^2/(2*xi), where phi is the golden ratio (A001622, 2*cos(Pi/5)) and xi is its associate (A182007, 2*sin(Pi/5)).

Examples

			1.1135163644116067351943750394869493758831503698864877726012080...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. A001622, A182007, A019863, A019863, A019952, A374771 (sphere volume).
Cf. Platonic solids inradii: A020781 (tetrahedron), A020763 (octahedron), A179294 (icosahedron).

Programs

  • Mathematica
    RealDigits[ Cos[Pi/5]^2 / Sin[Pi/5], 10, 111][[1]] (* Or *)
    RealDigits[ Sqrt[5/8 + 11/(8 Sqrt[5])], 10, 111][[1]] (* Robert G. Wilson v, Feb 28 2014 *)
  • PARI
    sqrt(250+110*sqrt(5))/20

Formula

Equals A001622^2/A182007 = (cos(Pi/5))^2/sin(Pi/5) = A019863^2/A019845 = cos(Pi/5)*cotan(Pi/5) = A019863*A019952 = 1/sin(Pi/5) - sin(Pi/5) = A019845^(-1) - A019845 = sqrt(250+110*sqrt(5))/20.

A375067 Decimal expansion of the apothem (inradius) of a regular pentagon with unit side length.

Original entry on oeis.org

6, 8, 8, 1, 9, 0, 9, 6, 0, 2, 3, 5, 5, 8, 6, 7, 6, 9, 1, 0, 3, 6, 0, 4, 7, 9, 0, 9, 5, 5, 4, 4, 3, 8, 3, 9, 7, 6, 2, 9, 4, 9, 6, 6, 8, 0, 0, 4, 0, 7, 9, 3, 3, 1, 6, 8, 2, 8, 3, 7, 8, 8, 2, 8, 0, 9, 5, 4, 7, 5, 9, 6, 8, 8, 3, 5, 8, 6, 4, 9, 2, 5, 3, 2, 9, 7, 6, 4, 9, 6
Offset: 0

Views

Author

Paolo Xausa, Jul 29 2024

Keywords

Examples

			0.688190960235586769103604790955443839762949668...
		

Crossrefs

Cf. A300074 (circumradius), A375068 (sagitta), A102771 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon), A375193 (12-gon).

Programs

Formula

Equals cot(Pi/5)/2 = A019952/2.
Equals 1/(2*tan(Pi/5)) = 1/(2*A019934).
Equals sqrt(1/4 + 1/(2*sqrt(5))).
Equals (1/2)*csc(Pi/5)*cos(Pi/5) = A300074*A019863.
Equals A300074 - A375068.
Equals A131595/30. - Hugo Pfoertner, Jul 30 2024

A019916 Decimal expansion of tan(Pi/10) (angle of 18 degrees).

Original entry on oeis.org

3, 2, 4, 9, 1, 9, 6, 9, 6, 2, 3, 2, 9, 0, 6, 3, 2, 6, 1, 5, 5, 8, 7, 1, 4, 1, 2, 2, 1, 5, 1, 3, 4, 4, 6, 4, 9, 5, 4, 9, 0, 3, 4, 7, 1, 5, 2, 1, 4, 7, 5, 1, 0, 0, 3, 0, 7, 8, 0, 4, 7, 1, 9, 1, 3, 6, 6, 7, 2, 9, 0, 0, 9, 6, 0, 7, 4, 4, 9, 4, 8, 3, 2, 2, 6, 8, 7, 7, 3, 5, 4, 4, 6, 9, 6, 5, 0, 5, 0
Offset: 0

Views

Author

Keywords

Comments

In a regular pentagon inscribed in a unit circle this is the cube of the length of the side divided by 5: (1/5)*(sqrt(3 - phi))^3 with phi from A001622. - Wolfdieter Lang, Jan 08 2018
Quartic number of denominator 5 and minimal polynomial 5x^4 - 10x^2 + 1. - Charles R Greathouse IV, May 13 2019
The other positive root of the minimal polynomial is A019952. - R. J. Mathar, Sep 06 2025

Examples

			0.3249196962329063261558714122151344649549034715214751003078047191...
		

Crossrefs

Cf. A001622, A019827 (sin(Pi/10)), A019881 (cos(Pi/10)).

Programs

Formula

Equals A019827/A019881 = 1/A019970 = 1/sqrt(5+2*sqrt(5)). - R. J. Mathar, Jul 26 2010
Equals tan((phi - 1)/sqrt(2 + phi)) = (1/5)*(sqrt(3 - phi))^3 = (3 - phi)*sqrt(3 - phi)/5 = sqrt(7 - 4*phi)/(2*phi - 1), with phi from A001622. - Wolfdieter Lang, Jan 08 2018
Equals Product_{k>=0} ((5*k + 1)/(5*k + 4))^(-1)^(k) = Product_{k>=0} A090771(k)/A090773(k). - Antonio Graciá Llorente, Mar 24 2024
Equals A019845/(1+A019863). - R. J. Mathar, Sep 06 2025

A090772 Numbers that are congruent to {2, 8} mod 10.

Original entry on oeis.org

2, 8, 12, 18, 22, 28, 32, 38, 42, 48, 52, 58, 62, 68, 72, 78, 82, 88, 92, 98, 102, 108, 112, 118, 122, 128, 132, 138, 142, 148, 152, 158, 162, 168, 172, 178, 182, 188, 192, 198, 202, 208, 212, 218, 222, 228, 232, 238, 242, 248, 252, 258, 262, 268, 272, 278, 282
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 07 2004

Keywords

Comments

Their square ends in the digit 4. - Kausthub Gudipati, Sep 08 2011
10*a(n) = 20, 80, 120, 180, 220, ... are the only numbers written in French ending in "vingt(s)". - Paul Curtz, Aug 02 2018

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(2*x*(1+3*x+x^2)/((1+x)*(1-x)^2))); // G. C. Greubel, Aug 08 2018
  • Mathematica
    Union@ Flatten@ Outer[Plus, {2, 8}, 10 Range[0, 28]] (* or *)
    CoefficientList[Series[2 (1 + 3x + x^2)/((1 + x) (1 - x)^2), {x, 0, 57}], x] (* Michael De Vlieger, Aug 02 2018 *)
    LinearRecurrence[{1, 1, -1}, {2, 8, 12}, 61] (* Robert G. Wilson v, Aug 08 2018 *)
  • PARI
    is(n) = #setintersect([2, 8], [n%10]) > 0 \\ Felix Fröhlich, Aug 02 2018
    
  • PARI
    Vec(2*x*(1+3*x+x^2)/((1+x)*(1-x)^2) + O(x^60)) \\ Felix Fröhlich, Aug 02 2018
    

Formula

a(n) = 2 * A047209(n).
a(n) = 10*n - a(n-1) - 10 (with a(1)=2). - Vincenzo Librandi, Nov 16 2010
G.f.: 2*x*(1+3*x+x^2)/((1+x)*(1-x)^2). - Bruno Berselli, Sep 08 2011
a(1) = 2. For n > 1, a(n) = a(n-1) + A226294(n). - Felix Fröhlich, Aug 02 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1+2/sqrt(5))*Pi/10. - Amiram Eldar, Dec 28 2021
E.g.f.: 2 + ((10*x - 5)*exp(x) + exp(-x))/2. - David Lovler, Sep 03 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = tan(3*Pi/10) (A019952).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(2*Pi/5)/2 (= A179290 / 2). (End)

Extensions

Edited and extended by Ray Chandler, Feb 10 2004

A344171 Decimal expansion of 12*sqrt(5).

Original entry on oeis.org

2, 6, 8, 3, 2, 8, 1, 5, 7, 2, 9, 9, 9, 7, 4, 7, 6, 3, 5, 6, 9, 1, 0, 0, 8, 4, 0, 2, 4, 7, 7, 5, 3, 1, 4, 8, 2, 5, 2, 8, 7, 4, 2, 0, 3, 1, 5, 3, 3, 8, 3, 0, 8, 6, 9, 1, 2, 5, 0, 7, 6, 6, 9, 4, 4, 9, 2, 6, 2, 5, 1, 1, 0, 7, 6, 5, 3, 6, 5, 8, 7, 9, 2, 9, 7, 2, 9, 7, 2, 9, 0, 0, 5
Offset: 2

Views

Author

Wesley Ivan Hurt, May 10 2021

Keywords

Comments

Decimal expansion of the surface area of a rhombic triacontahedron with unit edge length.

Examples

			26.83281572999747635691008...
		

Crossrefs

Cf. A344172 (rhombic triacontahedron volume).
Cf. A344212 (rhombic triacontahedron midradius).
Cf. A019952 (rhombic triacontahedron radius of inscribed sphere).

Programs

  • Mathematica
    RealDigits[12 Sqrt[5], 10, 100][[1]] // Flatten
Showing 1-10 of 17 results. Next