cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A346651 a(n) is the number of divisors of A139245(n) ending with 2.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 4, 2, 2, 3, 2, 3, 4, 2, 2, 3, 2, 3, 5, 2, 3, 3, 2, 2, 4, 3, 2, 3, 4, 2, 4, 2, 3, 3, 2, 2, 5, 3, 2, 6, 2, 2, 4, 2, 3, 3, 3, 2, 4, 2, 4, 3, 3, 3, 5, 2, 2, 3, 2, 2, 7, 4, 2, 4, 2, 2, 4, 3, 3, 3, 2, 3, 6, 2, 3, 3, 4, 2, 4, 2, 2, 5, 2
Offset: 1

Views

Author

Stefano Spezia, Jul 26 2021

Keywords

Comments

a(n) is odd if and only if A139245(n) either is the square of a number ending with 2 or has a unitary prime divisor ending with 7.
The term 1 appears only for n = 1 in corresponding to A139245(1) = 4.

Examples

			a(14) = 4 since there are 4 divisors of A139245(14) = 264 ending with 2: 2, 12, 22 and 132.
		

Crossrefs

Cf. A000005, A017293 (numbers ending with 2), A017294 (squares of numbers ending with 2), A030432, A056169, A139245 (product of two numbers ending with 2), A346388, A346389.

Programs

  • Mathematica
    a[n_]:=Length[Drop[Select[Divisors[20n-16], (Last[IntegerDigits[#]]==2&)]]]; Array[a, 90]
  • PARI
    a(n) = sumdiv(20*n-16, d, (d%10) == 2); \\ Michel Marcus, Jul 26 2021

A017281 a(n) = 10*n + 1.

Original entry on oeis.org

1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231, 241, 251, 261, 271, 281, 291, 301, 311, 321, 331, 341, 351, 361, 371, 381, 391, 401, 411, 421, 431, 441, 451, 461, 471, 481, 491, 501, 511, 521, 531
Offset: 0

Views

Author

Keywords

Comments

Equals [1, 2, 3, ...] convolved with [1, 9, 0, 0, 0, ...]. - Gary W. Adamson, May 30 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=10, (i>1), A[i,i-1] = -1, and A[i,j]=0 otherwise. Then, for n>=2, a(n-1) = -coeff(charpoly(A,x),x^(n-1)). - Milan Janjic, Feb 21 2010
Positive integers with last decimal digit = 1. - Wesley Ivan Hurt, Jun 17 2015
Also the number of (not necessarily maximal) cliques in the 2n-crossed prism graph. - Eric W. Weisstein, Nov 29 2017
From Martin Renner, May 28 2024: (Start)
Also number of squares in a grid cross with equally long arms and a width of two points (cf. A017113), e.g. for n = 2 there are nine squares of size 1 unit of area, four of size 2, two of size 5, four of size 8 and two of size 13, thus a total of 21 squares.
· · · · · · · · * ·
· · · · * · * · · ·
* * · · · · · · * · · · · · · · * · · · · · · · · · · · · *
* * · · · · · * · * · · · * · · · · * · · · * · * · · · · ·
· · * · · * · · · ·
· · · · · · * · · *
The possible areas of the squares are given by ceiling(k^2/2) for 1 <= k <= 2*n+1, cf. A000982. In general, there are 4*n + 1 squares with one unit area to be found in the cross, cf. A016813, for n > 0 always four squares of even area and two squares of odd area > 1. (End)

Crossrefs

Cf. A093645 (column 1).
Subsequence of A034709, together with A017293, A017329, A139222, A139245, A139249, A139264, A139279 and A139280.
Cf. A030430 (primes).
Cf. A272914, first comment. [Bruno Berselli, May 26 2016]

Programs

Formula

G.f.: (1+9*x)/(1-x)^2.
a(n) = 20*n - a(n-1) - 8, with a(0)=1. - Vincenzo Librandi, Nov 20 2010
a(n) = 2*a(n-1) - a(n-2), for n > 2. - Wesley Ivan Hurt, Jun 17 2015
E.g.f.: (1 + 10*x)*exp(x). - G. C. Greubel, Sep 18 2019

A017329 a(n) = 10*n + 5.

Original entry on oeis.org

5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165, 175, 185, 195, 205, 215, 225, 235, 245, 255, 265, 275, 285, 295, 305, 315, 325, 335, 345, 355, 365, 375, 385, 395, 405, 415, 425, 435, 445, 455, 465, 475, 485, 495, 505, 515, 525, 535
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of tanh(1/5). - Benoit Cloitre, Dec 17 2002
n such that 5 divides the numerator of B(2n) where B(2n) = the 2n-th Bernoulli number. - Benoit Cloitre, Jan 01 2004
5 times odd numbers. - Omar E. Pol, May 02 2008
5th transversal numbers (or 5-transversal numbers): Numbers of the 5th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 5th column in the square array A057145. - Omar E. Pol, May 02 2008
Successive sums: 5, 20, 45, 80, 125, ... (see A033429). - Philippe Deléham, Dec 08 2011
3^a(n) + 1 is divisible by 61. - Vincenzo Librandi, Feb 05 2013
If the initial 5 is changed to 1, giving 1,15,25,35,45,..., these are values of m such that A323288(m)/m reaches a new record high value. - N. J. A. Sloane, Jan 23 2019

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

a(n) = 5*A005408(n). - Omar E. Pol, Oct 19 2008
a(n) = 20*n - a(n-1) (with a(0)=5). - Vincenzo Librandi, Nov 19 2010
G.f.: 5*(x+1)/(x-1)^2. - Colin Barker, Nov 14 2012
a(n) = A057145(n+2,5). - R. J. Mathar, Jul 28 2016
E.g.f.: 5*exp(x)*(1 + 2*x). - Stefano Spezia, Feb 14 2020
Sum_{n>=0} (-1)^n/a(n) = Pi/20. - Amiram Eldar, Dec 12 2021
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(5-sqrt(5))/2 = sqrt(2)*sin(Pi/5) = A182007/A002193.
Product_{n>=0} (1 + (-1)^n/a(n)) = phi/sqrt(2) (A094884). (End)
a(n) = (n+3)^2 - (n-2)^2. - Alexander Yutkin, Mar 16 2025
From Elmo R. Oliveira, Apr 12 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
a(n) = A008587(2*n+1). (End)

A034709 Numbers divisible by their last digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 21, 22, 24, 25, 31, 32, 33, 35, 36, 41, 42, 44, 45, 48, 51, 52, 55, 61, 62, 63, 64, 65, 66, 71, 72, 75, 77, 81, 82, 84, 85, 88, 91, 92, 93, 95, 96, 99, 101, 102, 104, 105, 111, 112, 115, 121, 122, 123, 124, 125, 126, 128, 131, 132
Offset: 1

Views

Author

Keywords

Comments

The differences between consecutive terms repeat with period 1177 and the corresponding terms differ by 2520 = LCM(1,2,...,9). In other words, a(k*1177+i) = 2520*k + a(i). - Giovanni Resta, Aug 20 2015
The asymptotic density of this sequence is 1177/2520 = 0.467063... (see A341431 and A341432 for the values in other base representations). - Amiram Eldar, Nov 24 2022

Crossrefs

Programs

  • Haskell
    import Data.Char (digitToInt)
    a034709 n = a034709_list !! (n-1)
    a034709_list =
       filter (\i -> i `mod` 10 > 0 && i `mod` (i `mod` 10) == 0) [1..]
    -- Reinhard Zumkeller, Jun 19 2011
    
  • Maple
    N:= 1000: # to get all terms <= N
    sort([seq(seq(ilcm(10,d)*x+d, x=0..floor((N-d)/ilcm(10,d))), d=1..9)]); # Robert Israel, Aug 20 2015
  • Mathematica
    dldQ[n_]:=Module[{idn=IntegerDigits[n],last1},last1=Last[idn]; last1!= 0&&Divisible[n,last1]]; Select[Range[150],dldQ]  (* Harvey P. Dale, Apr 25 2011 *)
    Select[Range[150],Mod[#,10]!=0&&Divisible[#,Mod[#,10]]&] (* Harvey P. Dale, Aug 07 2022 *)
  • PARI
    for(n=1,200,if(n%10,if(!(n%digits(n)[#Str(n)]),print1(n,", ")))) \\ Derek Orr, Sep 19 2014
  • Python
    A034709_list = [n for n in range(1, 1000) if n % 10 and not n % (n % 10)]
    # Chai Wah Wu, Sep 18 2014
    

A017293 a(n) = 10*n + 2.

Original entry on oeis.org

2, 12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122, 132, 142, 152, 162, 172, 182, 192, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 302, 312, 322, 332, 342, 352, 362, 372, 382, 392, 402, 412, 422, 432, 442, 452, 462, 472, 482, 492, 502, 512, 522, 532
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Number of 5 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (11;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1A008574; m=3: A016933; m=4: A022144; m=6: A017569. - Sergey Kitaev, Nov 13 2004

Crossrefs

Programs

Formula

a(n) = 2*A016861(n) = A008592(n) + 2. - Wesley Ivan Hurt, May 03 2014
G.f.: 2*(1 + 4*x)/(1-x)^2. - Vincenzo Librandi, Jul 23 2016
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 2*exp(x)*(1 + 5*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = A016873(2*n). (End)

A139279 a(n) = 40*n - 32.

Original entry on oeis.org

8, 48, 88, 128, 168, 208, 248, 288, 328, 368, 408, 448, 488, 528, 568, 608, 648, 688, 728, 768, 808, 848, 888, 928, 968, 1008, 1048, 1088, 1128, 1168, 1208, 1248, 1288, 1328, 1368, 1408, 1448, 1488, 1528, 1568, 1608, 1648, 1688, 1728, 1768, 1808, 1848
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 8 with unit digit equal to 8.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139249, A139264 and A139280.

Programs

Formula

a(n) = a(n-1) + 40.
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: (72*x - 32)/(1-x)^2.
E.g.f.: (40*x - 32)*exp(x). (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008
New definition from Paolo P. Lava, Sep 06 2010

A139280 a(n) = 90*n - 81.

Original entry on oeis.org

9, 99, 189, 279, 369, 459, 549, 639, 729, 819, 909, 999, 1089, 1179, 1269, 1359, 1449, 1539, 1629, 1719, 1809, 1899, 1989, 2079, 2169, 2259, 2349, 2439, 2529, 2619, 2709, 2799, 2889, 2979, 3069, 3159, 3249, 3339, 3429, 3519, 3609, 3699, 3789, 3879, 3969
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 9 with final digit 9.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139249, A139264 and A139279.

Programs

Formula

a(n) = a(n-1) + 90.
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: 9*(19*x-9)/(x-1)^2.
E.g.f.: 81 + 9*(10*x - 9)*exp(x). (End) [G.f. corrected by Georg Fischer, May 12 2019]; [E.g.f. corrected by Elmo R. Oliveira, Apr 04 2025]
From Elmo R. Oliveira, Apr 04 2025: (Start)
a(n) = 9*A017281(n-1) = 3*A139222(n).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A346950 Positive integers k that are the product of two integers ending with 3.

Original entry on oeis.org

9, 39, 69, 99, 129, 159, 169, 189, 219, 249, 279, 299, 309, 339, 369, 399, 429, 459, 489, 519, 529, 549, 559, 579, 609, 639, 669, 689, 699, 729, 759, 789, 819, 849, 879, 909, 939, 949, 969, 989, 999, 1029, 1059, 1079, 1089, 1119, 1149, 1179, 1209, 1219, 1239, 1269
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Comments

All the terms end with 9 (A017377).

Examples

			9 = 3*3, 39 = 3*13, 69 = 3*23, 99 = 3*33, 129 = 3*43, 159 = 3*53, 169 = 13*13, 189 = 3*63, ...
		

Crossrefs

Cf. A017377 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346951, A346952, A346953.

Programs

  • Mathematica
    a={}; For[n=0, n<=250, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3&& 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(1270)) # Michael S. Branicky, Aug 08 2021

Formula

Limit_{n->oo} a(n)/a(n-1) = 1.

A139222 a(n) = 30*n - 27.

Original entry on oeis.org

3, 33, 63, 93, 123, 153, 183, 213, 243, 273, 303, 333, 363, 393, 423, 453, 483, 513, 543, 573, 603, 633, 663, 693, 723, 753, 783, 813, 843, 873, 903, 933, 963, 993, 1023, 1053, 1083, 1113, 1143, 1173, 1203, 1233, 1263, 1293, 1323, 1353, 1383, 1413, 1443, 1473
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 3 with the units digit equal to 3.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139245, A017329, A139249, A139264, A139279 and A139280.

Programs

Formula

a(n) = a(n-1) + 30.
From Elmo R. Oliveira, Apr 04 2025: (Start)
G.f.: 3*x*(1+9*x)/(1-x)^2.
E.g.f.: 3*(exp(x)*(10*x - 9) + 9).
a(n) = 3*A017281(n-1) = A139280(n)/3.
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A139249 a(n) = 30*n - 24.

Original entry on oeis.org

6, 36, 66, 96, 126, 156, 186, 216, 246, 276, 306, 336, 366, 396, 426, 456, 486, 516, 546, 576, 606, 636, 666, 696, 726, 756, 786, 816, 846, 876, 906, 936, 966, 996, 1026, 1056, 1086, 1116, 1146, 1176, 1206, 1236, 1266, 1296, 1326, 1356, 1386, 1416, 1446, 1476
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008, Jun 07 2008

Keywords

Comments

Multiples of 6 with unit digit equal to 6.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139264, A139279 and A139280. - Reinhard Zumkeller, Jun 22 2008
Cf. A016861.

Programs

Formula

a(n) = a(n-1) + 30.
From Elmo R. Oliveira, Apr 04 2025: (Start)
G.f.: 6*x*(1+4*x)/(1-x)^2.
E.g.f.: 6*(exp(x)*(5*x - 4) + 4).
a(n) = 6*A016861(n-1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008
Edited by R. J. Mathar, Jul 20 2008
Showing 1-10 of 16 results. Next