A017455 a(n) = (11*n + 5)^7.
78125, 268435456, 10460353203, 114415582592, 678223072849, 2799360000000, 9095120158391, 24928547056768, 60170087060757, 131593177923584, 266001988046875, 504189521813376, 905824306333433, 1555363874947072, 2569093262823519, 4103386730000000, 6364290927201661, 9618527719784448
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+5)^7); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+5)^7: n in [0..20]]; // Vincenzo Librandi, Sep 03 2011
-
Maple
seq((11*n+5)^7, n=0..20); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11*Range[21] -6)^7 (* G. C. Greubel, Sep 19 2019 *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{78125,268435456,10460353203,114415582592,678223072849,2799360000000,9095120158391,24928547056768},20] (* Harvey P. Dale, Apr 22 2024 *)
-
PARI
vector(20, n, (11*n-6)^7) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+5)^7 for n in (0..20)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (78125 +267810456*x +8315057055*x^2 +38244574736*x^3 +40761385011* x^4 +10218057336*x^5 +408099185*x^6 +279936*x^7)/(1-x)^8.
E.g.f.: (78125 +268357331*x +4961780208*x^2 +13973291871*x^3 + 11760383250*x^4 +3742825240*x^5 +471235226*x^6 +19487171*x^7)*exp(x). (End)