A017503 a(n) = (11*n + 9)^7.
4782969, 1280000000, 27512614111, 230539333248, 1174711139837, 4398046511104, 13348388671875, 34792782221696, 80798284478113, 171382426877952, 337931541778439, 627485170000000, 1107984764452581, 1874584905187328, 3057125241215467, 4828861374436224
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+9)^7); # G. C. Greubel, Oct 28 2019
-
Magma
[(11*n+9)^7: n in [0..20]]; // G. C. Greubel, Oct 28 2019
-
Maple
A017503:=n->(11*n+9)^7; seq(A017503(n), n=0..50); # Wesley Ivan Hurt, Nov 20 2013
-
Mathematica
Table[(11n+9)^7, {n,0,50}] (* Wesley Ivan Hurt, Nov 20 2013 *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{4782969,1280000000,27512614111,230539333248,1174711139837,4398046511104,13348388671875,34792782221696},20] (* Harvey P. Dale, Nov 12 2022 *)
-
PARI
vector(21, n, (11*n-2)^7) \\ G. C. Greubel, Oct 28 2019
-
Sage
[(11*n+9)^7 for n in (0..20)] # G. C. Greubel, Oct 28 2019
Formula
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (4782969 + 1241736248*x + 17406537243*x^2 + 46010574096*x^3 + 29404476791*x^4 + 4084486872*x^5 + 62747493*x^6 + 128*x^7)/(1-x)^8.
E.g.f.: (4782969 + 1275217031*x + 12478698540*x^2 + 25306117991*x^3 + 17188094770*x^4 + 4676276836*x^5 + 520838934*x^6 + 19487171*x^7)*exp(x). (End)