A017569 a(n) = 12*n + 4.
4, 16, 28, 40, 52, 64, 76, 88, 100, 112, 124, 136, 148, 160, 172, 184, 196, 208, 220, 232, 244, 256, 268, 280, 292, 304, 316, 328, 340, 352, 364, 376, 388, 400, 412, 424, 436, 448, 460, 472, 484, 496, 508, 520, 532, 544, 556, 568, 580, 592, 604, 616, 628
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Milan Janjic, Two Enumerative Functions.
- Tanya Khovanova, Recursive Sequences.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 4 (2004), Article A21, 20pp.
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N)).
- William A. Stein, The modular forms database.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Haskell
a017569 = (+ 4) . (* 12) -- Reinhard Zumkeller, Jul 05 2013
-
Magma
[12*n+4: n in [0..50]]; // Vincenzo Librandi, May 04 2011
-
Mathematica
12*Range[0,200]+4 (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *)
Formula
A089911(a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(2)/12. - Amiram Eldar, Dec 12 2021
From Stefano Spezia, Feb 25 2023: (Start)
O.g.f.: 4*(1 + 2*x)/(1 - x)^2.
E.g.f.: 4*exp(x)*(1 + 3*x). (End)
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
Comments