A017653 a(n) = 12*n + 11.
11, 23, 35, 47, 59, 71, 83, 95, 107, 119, 131, 143, 155, 167, 179, 191, 203, 215, 227, 239, 251, 263, 275, 287, 299, 311, 323, 335, 347, 359, 371, 383, 395, 407, 419, 431, 443, 455, 467, 479, 491, 503, 515, 527, 539, 551, 563, 575, 587, 599, 611, 623, 635
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- John Elias, 60*n+55 Triangular Snowflakes.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1000.
- Tanya Khovanova, Recursive Sequences.
- Leo Tavares, Illustration: Twin Hexagonal Frames.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Haskell
a017653 = (+ 11) . (* 12) -- Reinhard Zumkeller, Jul 05 2013
-
Magma
[12*n+11: n in [0..60]]; // Vincenzo Librandi, Jun 08 2011
-
Mathematica
Array[12*#+11&,100,0] (* Vladimir Joseph Stephan Orlovsky, Dec 14 2009 *)
-
PARI
a(n)=12*n+11
Formula
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 08 2011
G.f.: (11+x)/(1-x)^2. - Colin Barker, Feb 19 2012
A089911(2*a(n)) = 11. - Reinhard Zumkeller, Jul 05 2013
a(n) = 2*A003215(n+1) - 1 - 2*A003215(n). See Twin Hexagonal Frames illustration. - Leo Tavares, Aug 19 2021
From Elmo R. Oliveira, Apr 12 2025: (Start)
E.g.f.: exp(x)*(11 + 12*x).
a(n) = A016969(2*n+1). (End)
Comments