cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017667 Numerator of sum of -2nd powers of divisors of n.

Original entry on oeis.org

1, 5, 10, 21, 26, 25, 50, 85, 91, 13, 122, 35, 170, 125, 52, 341, 290, 455, 362, 273, 500, 305, 530, 425, 651, 425, 820, 75, 842, 13, 962, 1365, 1220, 725, 52, 637, 1370, 905, 1700, 221, 1682, 625, 1850, 1281, 2366, 1325, 2210, 1705, 2451, 651, 2900, 1785
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^2*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
C. Defant proves that there are no positive integers n such that sigma_{-2}(n) lies in (Pi^2/8, 5/4). See arxiv link. - Michel Marcus, Aug 24 2018

Examples

			1, 5/4, 10/9, 21/16, 26/25, 25/18, 50/49, 85/64, 91/81, 13/10, 122/121, 35/24, 170/169, ...
		

Crossrefs

Cf. A017668 (denominator), A002117, A013661, A111003 (Pi^2/8).

Programs

  • Magma
    [Numerator(DivisorSigma(2,n)/n^2): n in [1..50]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[Numerator[DivisorSigma[-2, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
    Table[Numerator[DivisorSigma[2, n]/n^2], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    a(n) = numerator(sigma(n, -2)); \\ Michel Marcus, Aug 24 2018
    
  • PARI
    vector(50, n, numerator(sigma(n, 2)/n^2)) \\ G. C. Greubel, Nov 08 2018
    

Formula

Dirichlet g.f.: zeta(s)*zeta(s+2) [for fraction A017667/A017668]. - Franklin T. Adams-Watters, Sep 11 2005
sup_{n>=1} a(n)/A017668(n) = zeta(2) (A013661). - Amiram Eldar, Sep 25 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017668(k) = zeta(3) (A002117). - Amiram Eldar, Apr 02 2024