A017667 Numerator of sum of -2nd powers of divisors of n.
1, 5, 10, 21, 26, 25, 50, 85, 91, 13, 122, 35, 170, 125, 52, 341, 290, 455, 362, 273, 500, 305, 530, 425, 651, 425, 820, 75, 842, 13, 962, 1365, 1220, 725, 52, 637, 1370, 905, 1700, 221, 1682, 625, 1850, 1281, 2366, 1325, 2210, 1705, 2451, 651, 2900, 1785
Offset: 1
Examples
1, 5/4, 10/9, 21/16, 26/25, 25/18, 50/49, 85/64, 91/81, 13/10, 122/121, 35/24, 170/169, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Colin Defant, On the Density of Ranges of Generalized Divisor Functions, Notes on Number Theory and Discrete Mathematics, Vol. 21, No. 3 (2015), pp. 80-87; arXiv preprint, arXiv:1506.05432 [math.NT], 2015.
Programs
-
Magma
[Numerator(DivisorSigma(2,n)/n^2): n in [1..50]]; // G. C. Greubel, Nov 08 2018
-
Mathematica
Table[Numerator[DivisorSigma[-2, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *) Table[Numerator[DivisorSigma[2, n]/n^2], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
-
PARI
a(n) = numerator(sigma(n, -2)); \\ Michel Marcus, Aug 24 2018
-
PARI
vector(50, n, numerator(sigma(n, 2)/n^2)) \\ G. C. Greubel, Nov 08 2018
Formula
Dirichlet g.f.: zeta(s)*zeta(s+2) [for fraction A017667/A017668]. - Franklin T. Adams-Watters, Sep 11 2005
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017668(k) = zeta(3) (A002117). - Amiram Eldar, Apr 02 2024
Comments