cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A017668 Denominator of sum of -2nd powers of divisors of n.

Original entry on oeis.org

1, 4, 9, 16, 25, 18, 49, 64, 81, 10, 121, 24, 169, 98, 45, 256, 289, 324, 361, 200, 441, 242, 529, 288, 625, 338, 729, 56, 841, 9, 961, 1024, 1089, 578, 49, 432, 1369, 722, 1521, 160, 1681, 441, 1849, 968, 2025, 1058, 2209, 1152, 2401, 500, 2601, 1352, 2809
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 5/4, 10/9, 21/16, 26/25, 25/18, 50/49, 85/64, 91/81, 13/10, 122/121, 35/24, 170/169, ...
		

Crossrefs

Cf. A017667 (numerator).

Programs

  • Magma
    [Denominator(DivisorSigma(2,n)/n^2): n in [1..50]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[Denominator[DivisorSigma[-2, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
    Table[Denominator[DivisorSigma[2, n]/n^2], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    a(n) = denominator(sigma(n, -2)); \\ Michel Marcus, Aug 24 2018
    
  • PARI
    vector(50, n, denominator(sigma(n, 2)/n^2)) \\ G. C. Greubel, Nov 08 2018
    

Formula

Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^2*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018

A373439 Numerator of sum of reciprocals of square divisors of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 1, 1, 1, 21, 1, 10, 1, 5, 1, 1, 1, 5, 26, 1, 10, 5, 1, 1, 1, 21, 1, 1, 1, 25, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 21, 50, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 85, 1, 1, 1, 5, 1, 1, 1, 25, 1, 1, 26, 5, 1, 1, 1, 21, 91, 1, 1, 5, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 05 2024

Keywords

Examples

			1, 1, 1, 5/4, 1, 1, 1, 5/4, 10/9, 1, 1, 5/4, 1, 1, 1, 21/16, 1, 10/9, 1, 5/4, 1, 1, 1, 5/4, 26/25, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Rest // Numerator
    f[p_, e_] := (p^2 - p^(-2*Floor[e/2]))/(p^2-1); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 26 2024 *)
  • PARI
    a(n) = numerator(sumdiv(n, d, if (issquare(d), 1/d))); \\ Michel Marcus, Jun 05 2024

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^(k^2)/(k^2*(1 - x^(k^2))).
a(n) is the numerator of Sum_{d^2|n} 1/d^2.
From Amiram Eldar, Jun 26 2024: (Start)
Let f(n) = a(n)/A373440(n). Then:
f(n) is multiplicative with f(p^e) = (p^2 - p^(-2*floor(e/2)))/(p^2-1).
Dirichlet g.f. of f(n): zeta(s) * zeta(2*s+2).
Sum_{k=1..n} f(k) ~ zeta(4) * n. (End)

A208767 Generalized 2-super abundant numbers.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 48, 60, 120, 240, 360, 720, 840, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 360360, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 10810800, 12252240, 21621600, 24504480, 36756720, 61261200
Offset: 1

Views

Author

Ben Branman, Mar 01 2012

Keywords

Comments

The generalized k-super abundant numbers are those such that sigma_k(n)/(n^k) > sigma_k(m)/(m^k) for all m < n, where sigma_k(n) is the sum of the k-th powers of the divisors of n.
1-super abundant numbers are A004394. 0-super abundant numbers are A002182.
Pillai called these numbers "highly abundant numbers of the 2nd order". - Amiram Eldar, Jun 30 2019

Examples

			For i=24, sigma_2(24)/(24^2)=850/576=1.47569, a new record, thus 24 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; a = 1; Do[ If[DivisorSigma[2, n]/(n^2) > a, a = DivisorSigma[2, n]/(n^2); AppendTo[s, n]], {n, 10000000}]; s

Formula

Limit_{n->oo} A001157(a(n))/a(n)^2 = zeta(2) (A013661). - Amiram Eldar, Sep 25 2022

Extensions

More terms from Amiram Eldar, May 12 2019

A322263 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = numerator of Sum_{d|n} 1/d^k.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 7, 2, 1, 17, 28, 21, 6, 4, 1, 33, 82, 73, 26, 2, 2, 1, 65, 244, 273, 126, 25, 8, 4, 1, 129, 730, 1057, 626, 7, 50, 15, 3, 1, 257, 2188, 4161, 3126, 697, 344, 85, 13, 4, 1, 513, 6562, 16513, 15626, 671, 2402, 585, 91, 9, 2, 1, 1025, 19684, 65793, 78126, 23725, 16808, 4369, 757, 13, 12, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			Square array begins:
  1,    1,      1,        1,        1,          1,  ...
  2,  3/2,    5/4,      9/8,    17/16,      33/32,  ...
  2,  4/3,   10/9,    28/27,    82/81,    244/243,  ...
  3,  7/4,  21/16,    73/64,  273/256,  1057/1024,  ...
  2,  6/5,  26/25,  126/125,  626/625,  3126/3125,  ...
  4,    2,  25/18,      7/6,  697/648,    671/648,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Numerator[DivisorSigma[-k, n]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Numerator[DivisorSigma[k, n]/n^k]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Numerator[SeriesCoefficient[Sum[x^j/(j^k (1 - x^j)), {j, 1, n}], {x, 0, n}]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} x^j/(j^k*(1 - x^j)) (for rationals Sum_{d|n} 1/d^k).
Dirichlet g.f. of column k: zeta(s)*zeta(s+k) (for rationals Sum_{d|n} 1/d^k).
A(n,k) = numerator of sigma_k(n)/n^k.

A357555 a(n) is the numerator of Sum_{d|n} (-1)^(d+1) / d^2.

Original entry on oeis.org

1, 3, 10, 11, 26, 5, 50, 43, 91, 39, 122, 55, 170, 75, 52, 171, 290, 91, 362, 143, 500, 183, 530, 215, 651, 255, 820, 275, 842, 13, 962, 683, 1220, 435, 52, 1001, 1370, 543, 1700, 559, 1682, 125, 1850, 61, 2366, 795, 2210, 95, 2451, 1953, 2900, 935, 2810, 205, 3172
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 03 2022

Keywords

Examples

			1, 3/4, 10/9, 11/16, 26/25, 5/6, 50/49, 43/64, 91/81, 39/50, 122/121, ...
		

Crossrefs

Cf. A017667, A064027, A098987, A119682, A321543, A357556 (denominators).

Programs

  • Mathematica
    Table[Sum[(-1)^(d + 1)/d^2, {d, Divisors[n]}], {n, 1, 55}] // Numerator
    nmax = 55; CoefficientList[Series[Sum[(-1)^(k + 1) x^k/(k^2 (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
  • PARI
    a(n) = numerator(sumdiv(n, d, (-1)^(d+1)/d^2)); \\ Michel Marcus, Oct 03 2022
  • Python
    from sympy import divisors
    from fractions import Fraction
    def a(n): return sum(Fraction((-1)**(d+1), d*d) for d in divisors(n, generator=True)).numerator
    print([a(n) for n in range(1, 56)]) # Michael S. Branicky, Oct 03 2022
    

Formula

Numerators of coefficients in expansion of Sum_{k>=1} (-1)^(k+1) * x^k / (k^2 * (1 - x^k)).

A384817 Numerator of the sum of the reciprocals of all square divisors of all positive integers <= n.

Original entry on oeis.org

1, 2, 3, 17, 21, 25, 29, 17, 173, 191, 209, 463, 499, 535, 571, 2473, 2617, 2777, 2921, 3101, 3245, 3389, 3533, 3713, 96569, 100169, 34723, 36223, 37423, 38623, 39823, 20699, 21299, 21899, 22499, 69997, 71797, 73597, 75397, 77647, 79447, 81247, 83047, 85297
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2025

Keywords

Examples

			1, 2, 3, 17/4, 21/4, 25/4, 29/4, 17/2, 173/18, 191/18, 209/18, 463/36, ...
		

Crossrefs

Cf. A007406, A017667, A284648, A309125, A373439, A384818 (denominators).

Programs

  • Mathematica
    nmax = 44; CoefficientList[Series[1/(1 - x) Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
    Table[Sum[Floor[n/k^2]/k^2, {k, 1, Floor[Sqrt[n]]}], {n, 1, 44}] // Numerator
  • PARI
    a(n) = numerator(sum(k=1, n, sumdiv(k, d, if (issquare(d), 1/d)))); \\ Michel Marcus, Jun 10 2025

Formula

G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^(k^2) / (k^2*(1 - x^(k^2))).
a(n) is the numerator of Sum_{k=1..floor(sqrt(n))} floor(n/k^2) / k^2.
a(n) / A384818(n) ~ Pi^4 * n / 90.
Showing 1-6 of 6 results.