cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A261989 Numbers such that A017666(n) = A017668(n).

Original entry on oeis.org

1, 65, 175, 20737, 32045, 41474, 64090, 128180, 207370, 207553, 352529, 415106, 705058, 1264957, 1762645, 1824877, 2075530, 2529914, 3525290, 3628975, 3649754, 7050580, 7590250, 10223341, 12649570, 17626450, 20446682, 21504269, 23723401, 36321775, 40893364, 43008538, 45621925
Offset: 1

Views

Author

Michel Marcus, Sep 19 2015

Keywords

Examples

			sigma(65,-1) = 84/65 and sigma(65,-2) = 68/65, both having the same denominator, so 65 is a term.
sigma(32045, -1) = 9072/6409 and sigma(32045, -2) = 6736/6409, both having the same denominator, so 32045 is a term.
		

Crossrefs

Cf. denominator of sum of powers of divisors of n: A017666 (-1st powers), A017668 (-2nd powers).

Programs

  • PARI
    isok(n) = denominator(sigma(n,-1))==denominator(sigma(n,-2));

A017667 Numerator of sum of -2nd powers of divisors of n.

Original entry on oeis.org

1, 5, 10, 21, 26, 25, 50, 85, 91, 13, 122, 35, 170, 125, 52, 341, 290, 455, 362, 273, 500, 305, 530, 425, 651, 425, 820, 75, 842, 13, 962, 1365, 1220, 725, 52, 637, 1370, 905, 1700, 221, 1682, 625, 1850, 1281, 2366, 1325, 2210, 1705, 2451, 651, 2900, 1785
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^2*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
C. Defant proves that there are no positive integers n such that sigma_{-2}(n) lies in (Pi^2/8, 5/4). See arxiv link. - Michel Marcus, Aug 24 2018

Examples

			1, 5/4, 10/9, 21/16, 26/25, 25/18, 50/49, 85/64, 91/81, 13/10, 122/121, 35/24, 170/169, ...
		

Crossrefs

Cf. A017668 (denominator), A002117, A013661, A111003 (Pi^2/8).

Programs

  • Magma
    [Numerator(DivisorSigma(2,n)/n^2): n in [1..50]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[Numerator[DivisorSigma[-2, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
    Table[Numerator[DivisorSigma[2, n]/n^2], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    a(n) = numerator(sigma(n, -2)); \\ Michel Marcus, Aug 24 2018
    
  • PARI
    vector(50, n, numerator(sigma(n, 2)/n^2)) \\ G. C. Greubel, Nov 08 2018
    

Formula

Dirichlet g.f.: zeta(s)*zeta(s+2) [for fraction A017667/A017668]. - Franklin T. Adams-Watters, Sep 11 2005
sup_{n>=1} a(n)/A017668(n) = zeta(2) (A013661). - Amiram Eldar, Sep 25 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017668(k) = zeta(3) (A002117). - Amiram Eldar, Apr 02 2024

A373440 Denominator of sum of reciprocals of square divisors of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 16, 1, 1, 1, 18, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 18, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 05 2024

Keywords

Examples

			1, 1, 1, 5/4, 1, 1, 1, 5/4, 10/9, 1, 1, 5/4, 1, 1, 1, 21/16, 1, 10/9, 1, 5/4, 1, 1, 1, 5/4, 26/25, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Rest // Denominator
    f[p_, e_] := (p^2 - p^(-2*Floor[e/2]))/(p^2-1); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 26 2024 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, if (issquare(d), 1/d))); \\ Michel Marcus, Jun 05 2024

Formula

Denominators of coefficients in expansion of Sum_{k>=1} x^(k^2)/(k^2*(1-x^(k^2))).
a(n) is the denominator of Sum_{d^2|n} 1/d^2.

A208767 Generalized 2-super abundant numbers.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 48, 60, 120, 240, 360, 720, 840, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 360360, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 10810800, 12252240, 21621600, 24504480, 36756720, 61261200
Offset: 1

Views

Author

Ben Branman, Mar 01 2012

Keywords

Comments

The generalized k-super abundant numbers are those such that sigma_k(n)/(n^k) > sigma_k(m)/(m^k) for all m < n, where sigma_k(n) is the sum of the k-th powers of the divisors of n.
1-super abundant numbers are A004394. 0-super abundant numbers are A002182.
Pillai called these numbers "highly abundant numbers of the 2nd order". - Amiram Eldar, Jun 30 2019

Examples

			For i=24, sigma_2(24)/(24^2)=850/576=1.47569, a new record, thus 24 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; a = 1; Do[ If[DivisorSigma[2, n]/(n^2) > a, a = DivisorSigma[2, n]/(n^2); AppendTo[s, n]], {n, 10000000}]; s

Formula

Limit_{n->oo} A001157(a(n))/a(n)^2 = zeta(2) (A013661). - Amiram Eldar, Sep 25 2022

Extensions

More terms from Amiram Eldar, May 12 2019

A322264 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = denominator of Sum_{d|n} 1/d^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 4, 1, 1, 16, 27, 16, 5, 1, 1, 32, 81, 64, 25, 1, 1, 1, 64, 243, 256, 125, 18, 7, 1, 1, 128, 729, 1024, 625, 6, 49, 8, 1, 1, 256, 2187, 4096, 3125, 648, 343, 64, 9, 1, 1, 512, 6561, 16384, 15625, 648, 2401, 512, 81, 5, 1, 1, 1024, 19683, 65536, 78125, 23328, 16807, 4096, 729, 10, 11, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			Square array begins:
  1,    1,      1,        1,        1,          1,  ...
  2,  3/2,    5/4,      9/8,    17/16,      33/32,  ...
  2,  4/3,   10/9,    28/27,    82/81,    244/243,  ...
  3,  7/4,  21/16,    73/64,  273/256,  1057/1024,  ...
  2,  6/5,  26/25,  126/125,  626/625,  3126/3125,  ...
  4,    2,  25/18,      7/6,  697/648,    671/648,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Denominator[DivisorSigma[-k, n]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[DivisorSigma[k, n]/n^k]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[SeriesCoefficient[Sum[x^j/(j^k (1 - x^j)), {j, 1, n}], {x, 0, n}]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} x^j/(j^k*(1 - x^j)) (for rationals Sum_{d|n} 1/d^k).
Dirichlet g.f. of column k: zeta(s)*zeta(s+k) (for rationals Sum_{d|n} 1/d^k).
A(n,k) = denominator of sigma_k(n)/n^k.

A357556 a(n) is the denominator of Sum_{d|n} (-1)^(d+1) / d^2.

Original entry on oeis.org

1, 4, 9, 16, 25, 6, 49, 64, 81, 50, 121, 72, 169, 98, 45, 256, 289, 108, 361, 200, 441, 242, 529, 288, 625, 338, 729, 392, 841, 15, 961, 1024, 1089, 578, 49, 1296, 1369, 722, 1521, 800, 1681, 147, 1849, 88, 2025, 1058, 2209, 128, 2401, 2500, 2601, 1352, 2809, 243, 3025
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 03 2022

Keywords

Examples

			1, 3/4, 10/9, 11/16, 26/25, 5/6, 50/49, 43/64, 91/81, 39/50, 122/121, ...
		

Crossrefs

Cf. A017668, A064027, A098988, A321543, A334580, A357555 (numerators).

Programs

  • Mathematica
    Table[Sum[(-1)^(d + 1)/d^2, {d, Divisors[n]}], {n, 1, 55}] // Denominator
    nmax = 55; CoefficientList[Series[Sum[(-1)^(k + 1) x^k/(k^2 (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
  • PARI
    a(n) = denominator(sumdiv(n, d, (-1)^(d+1)/d^2)); \\ Michel Marcus, Oct 03 2022
  • Python
    from sympy import divisors
    from fractions import Fraction
    def a(n): return sum(Fraction((-1)**(d+1), d*d) for d in divisors(n, generator=True)).denominator
    print([a(n) for n in range(1, 56)]) # Michael S. Branicky, Oct 03 2022
    

Formula

Denominators of coefficients in expansion of Sum_{k>=1} (-1)^(k+1) * x^k / (k^2 * (1 - x^k)).

A384818 Denominator of the sum of the reciprocals of all square divisors of all positive integers <= n.

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 2, 18, 18, 18, 36, 36, 36, 36, 144, 144, 144, 144, 144, 144, 144, 144, 144, 3600, 3600, 1200, 1200, 1200, 1200, 1200, 600, 600, 600, 600, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 600, 600, 600, 1200, 58800, 58800, 58800, 58800, 58800
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2025

Keywords

Examples

			1, 2, 3, 17/4, 21/4, 25/4, 29/4, 17/2, 173/18, 191/18, 209/18, 463/36, ...
		

Crossrefs

Cf. A007407, A017668, A284650, A309125, A373440, A384817 (numerators).

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
    Table[Sum[Floor[n/k^2]/k^2, {k, 1, Floor[Sqrt[n]]}], {n, 1, 53}] // Denominator
  • PARI
    a(n) = denominator(sum(k=1, n, sumdiv(k, d, if (issquare(d), 1/d)))); \\ Michel Marcus, Jun 10 2025

Formula

G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^(k^2) / (k^2*(1 - x^(k^2))).
a(n) is the denominator of Sum_{k=1..floor(sqrt(n))} floor(n/k^2) / k^2.
A384817(n) / a(n) ~ Pi^4 * n / 90.
Showing 1-7 of 7 results.