A017668 Denominator of sum of -2nd powers of divisors of n.
1, 4, 9, 16, 25, 18, 49, 64, 81, 10, 121, 24, 169, 98, 45, 256, 289, 324, 361, 200, 441, 242, 529, 288, 625, 338, 729, 56, 841, 9, 961, 1024, 1089, 578, 49, 432, 1369, 722, 1521, 160, 1681, 441, 1849, 968, 2025, 1058, 2209, 1152, 2401, 500, 2601, 1352, 2809
Offset: 1
Examples
1, 5/4, 10/9, 21/16, 26/25, 25/18, 50/49, 85/64, 91/81, 13/10, 122/121, 35/24, 170/169, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Colin Defant, On the Density of Ranges of Generalized Divisor Functions, arXiv:1506.05432 [math.NT], 2015.
Crossrefs
Cf. A017667 (numerator).
Programs
-
Magma
[Denominator(DivisorSigma(2,n)/n^2): n in [1..50]]; // G. C. Greubel, Nov 08 2018
-
Mathematica
Table[Denominator[DivisorSigma[-2, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *) Table[Denominator[DivisorSigma[2, n]/n^2], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
-
PARI
a(n) = denominator(sigma(n, -2)); \\ Michel Marcus, Aug 24 2018
-
PARI
vector(50, n, denominator(sigma(n, 2)/n^2)) \\ G. C. Greubel, Nov 08 2018
Formula
Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^2*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
Comments