A017764 a(n) = binomial coefficient C(n,100).
1, 101, 5151, 176851, 4598126, 96560646, 1705904746, 26075972546, 352025629371, 4263421511271, 46897636623981, 473239787751081, 4416904685676756, 38393094575497956, 312629484400483356, 2396826047070372396, 17376988841260199871, 119594570260437846171
Offset: 100
Links
- G. C. Greubel, Table of n, a(n) for n = 100..1100
Crossrefs
Cf. similar sequences of the binomial coefficients C(n,k): A000012 (k = 0), A001477 (k = 1), A000217 (k = 2), A000292 (k = 3), A000332 (k = 4), A000389 (k = 5), A000579-A000582 (k = 6..9) A001287 (k = 10), A001288 (k = 11), A010965-A011001 (k = 12..48), A017713-A017763 (k = 49..99), this sequence (k = 100).
Programs
-
Magma
[Binomial(n,100): n in [100..130]]; // G. C. Greubel, Nov 24 2017
-
Mathematica
Table[Binomial[n, 100], {n, 100, 5!}] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)
-
PARI
a(n)=binomial(n,100) \\ Charles R Greathouse IV, Jun 28 2012
-
Python
A017764_list, m = [], [1]*101 for _ in range(10**2): A017764_list.append(m[-1]) for i in range(100): m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
-
Sage
[binomial(n, 100) for n in range(100,115)] # Zerinvary Lajos, May 23 2009
Formula
G.f.: x^100/(1 - x)^101. - Ilya Gutkovskiy, Mar 21 2016
E.g.f.: x^100 * exp(x)/(100)!. - G. C. Greubel, Nov 24 2017
From Amiram Eldar, Dec 20 2020: (Start)
Sum_{n>=100} 1/a(n) = 100/99.
Comments