cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017857 Expansion of 1/(1 - x^7 - x^8).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 2, 8, 28, 56, 70, 56, 28, 9, 10, 36, 84, 126, 126, 84, 37
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n into parts 7 and 8. - Joerg Arndt, Jun 28 2013

Crossrefs

Column k=7 of A306713.

Programs

  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^7-x^8))); // Vincenzo Librandi, Jun 28 2013
    
  • Magma
    I:=[1,0,0,0,0,0,0,1]; [n le 8 select I[n] else Self(n-7)+Self(n-8): n in [1..70]]; // Vincenzo Librandi, Jun 28 2013
    
  • Mathematica
    CoefficientList[Series[1 / (1 - Total[x^Range[7, 8]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 28 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,1,1},{1,0,0,0,0,0,0,1},80] (* Harvey P. Dale, Mar 19 2019 *)
  • PARI
    x='x+O('x^66); Vec(1/(1-x^7-x^8)) \\ Altug Alkan, Oct 07 2018

Formula

a(n) = a(n-7) + a(n-8) for n > 7. - Vincenzo Librandi, Jun 28 2013
a(n) = Sum_{k=0..floor(n/7)} binomial(k,n-7*k). - Seiichi Manyama, Oct 01 2024