A306713
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, 0, 0, ...
5, 1, 1, 1, 0, 0, 0, 0, 0, ...
8, 2, 0, 1, 1, 0, 0, 0, 0, ...
13, 2, 1, 0, 1, 1, 0, 0, 0, ...
21, 3, 2, 0, 0, 1, 1, 0, 0, ...
34, 4, 1, 1, 0, 0, 1, 1, 0, ...
55, 5, 1, 2, 0, 0, 0, 1, 1, ...
-
T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
A017867
Expansion of 1/(1 - x^8 - x^9).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 2, 9
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1,1).
-
m:=80; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^8-x^9))); // Vincenzo Librandi, Jun 28 2013
-
I:=[1,0,0,0,0,0,0,0,1]; [n le 9 select I[n] else Self(n-8)+Self(n-9): n in [1..80]]; // Vincenzo Librandi, Jun 28 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[8, 9]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 28 2013 *)
-
x='x+O('x^66); Vec(1/(1-x^8-x^9)) \\ Altug Alkan, Oct 07 2018
A306721
a(n) = Sum_{k=0..n} binomial(k, 7*(n-k)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1717, 3433, 6437, 11456, 19569, 32505, 53449, 89149, 155041, 286825, 564929, 1163317, 2442210, 5117225, 10558381, 21308121, 41973391, 80778601, 152344397, 282855561, 520060249, 953217792, 1753553441, 3256528177, 6127896977, 11694334137
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..3556
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1,1).
-
a[n_] := Sum[Binomial[k, 7*(n-k)], {k, 0, n}]; Array[a, 40, 0] (* Amiram Eldar, Jun 21 2021 *)
-
{a(n) = sum(k=0, n, binomial(k, 7*(n-k)))}
-
N=66; x='x+O('x^N); Vec((1-x)^6/((1-x)^7-x^8))
A127842
a(1)=1, a(2)=...=a(8)=0, a(n) = a(n-8)+a(n-7) for n>8.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 2, 8, 28, 56, 70, 56, 28, 9, 10, 36, 84, 126, 126, 84, 37
Offset: 1
Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007
- S. Suter, Binet-like formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007. [Apparently unpublished as of May 2016]
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1,1).
-
a:=[1,0,0,0,0,0,0,0];; for n in [9..80] do a[n]:=a[n-7]+a[n-8]; od; a; # Muniru A Asiru, Oct 07 2018
-
I:=[1,0,0,0,0,0,0,0]; [n le 8 select I[n] else Self(n-7)+Self(n-8): n in [1..100]]; // Vincenzo Librandi, Oct 08 2018
-
LinearRecurrence[{0, 0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 0}, 100] (* Vincenzo Librandi, Oct 08 2018 *)
-
Vec(x*(1-x)*(1+x+x^2+x^3+x^4+x^5+x^6)/(1-x^7-x^8) + O(x^100)) \\ Colin Barker, May 30 2016
A373913
Number of compositions of 8*n into parts 7 and 8.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 10, 46, 166, 496, 1288, 3004, 6437, 12888, 24464, 44728, 80428, 146320, 278104, 564929, 1225811, 2778772, 6396236, 14620646, 32760586, 71565796, 152344397, 316911454, 647536777, 1308456096, 2635130392, 5330198752, 10896635912
Offset: 0
-
CoefficientList[Series[1/(1-x-x^7/(1-x)^7),{x,0,40}],x] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,9,-1},{1,1,1,1,1,1,1,2},40] (* Harvey P. Dale, Jul 29 2024 *)
-
a(n) = sum(k=0, n\7, binomial(n+k, n-7*k));
Showing 1-5 of 5 results.
Comments