cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017892 Expansion of 1/(1 - x^10 - x^11 - x^12 - x^13 - x^14 - x^15 - x^16).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 4, 5, 7, 10, 15, 21, 28, 33, 36, 37, 37, 37, 38, 41, 50, 66, 90, 119, 150, 180, 207, 229, 246, 259, 276, 306, 359, 441, 554, 696, 862, 1041, 1221, 1390, 1547, 1703, 1882, 2116, 2441, 2891, 3494, 4259, 5174, 6205
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14, 15 and 16. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Cf. A017887.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80);
    Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16))); // Vincenzo Librandi, Jul 01 2013
    
  • Maple
    a[0]:= 1:
    for i from 1 to 9 do a[i]:= 0 od:
    for i from 10 to 15 do a[i]:= 1 od:
    for i from 16 to 1000 do a[i]:= add(a[j],j=i-16 .. i-10) od:
    seq(a[i],i=0..1000); # Robert Israel, Aug 15 2014
  • Mathematica
    (* From Harvey P. Dale, Mar 04 2013: (Start) *)
    CoefficientList[Series[1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16),{x,0,80}],x]
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1}, {1,0,0,0,0,0,0,0,0,0,1, 1,1,1,1,1},70] (* End *)
    CoefficientList[Series[1/(1 - Total[x^Range[10, 16]]), {x,0,80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16)) \\ Altug Alkan, Oct 04 2018
    
  • SageMath
    def A017892_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^10+x^17) ).list()
    A017892_list(80) # G. C. Greubel, Nov 06 2024

Formula

a(n) = a(n-10) + a(n-11) + a(n-12) + a(n-13) + a(n-14) + a(n-15) + a(n-16); a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=1, a(11)=1, a(12)=1, a(13)=1, a(14)=1, a(15)=1. - Harvey P. Dale, Mar 04 2013