A017887 Expansion of 1/(1 - x^10 - x^11).
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 1, 7, 21, 35, 35, 21, 7, 1
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1).
Crossrefs
Programs
-
Magma
m:=80; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^10-x^11))); // Vincenzo Librandi, Jul 01 2013 -
Magma
I:=[1,0,0,0,0,0,0,0,0,0,1]; [n le 11 select I[n] else Self(n-10)+Self(n-11): n in [1..80]]; // Vincenzo Librandi, Jul 01 2013
-
Mathematica
CoefficientList[Series[1 / (1 - Total[x^Range[10, 11]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 01 2013 *) LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1},{1,0,0,0,0,0,0,0,0,0,1},100] (* Harvey P. Dale, Feb 04 2015 *)
-
SageMath
def A017887_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/(1-x^10-x^(11)) ).list() A017887_list(100) # G. C. Greubel, Sep 25 2024
Formula
a(n) = a(n-10) + a(n-11) for n > 10. - Vincenzo Librandi, Jul 01 2013
a(n) = Sum_{k=0..floor(n/10)} binomial(k,n-10*k). - Seiichi Manyama, Oct 01 2024
Comments