A017886
Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 19, 23, 28, 34, 41, 49, 59, 72, 86, 102, 122, 146, 175, 210, 252, 303, 366, 441, 529, 635, 762, 914, 1096, 1314, 1576, 1893, 2275
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1).
-
m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[9, 19]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
def A017886_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(20)) ).list()
A017886_list(70) # G. C. Greubel, Sep 25 2024
A306713
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, 0, 0, ...
5, 1, 1, 1, 0, 0, 0, 0, 0, ...
8, 2, 0, 1, 1, 0, 0, 0, 0, ...
13, 2, 1, 0, 1, 1, 0, 0, 0, ...
21, 3, 2, 0, 0, 1, 1, 0, 0, ...
34, 4, 1, 1, 0, 0, 1, 1, 0, ...
55, 5, 1, 2, 0, 0, 0, 1, 1, ...
-
T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
A017890
Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 7, 7, 11, 20, 35, 52, 68, 80, 85, 80, 69, 57, 50, 55, 80, 125, 186, 255, 320, 365, 382, 371, 341, 311, 311, 367, 496, 701, 966, 1251, 1508, 1693, 1779, 1770, 1716, 1701, 1826
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1).
-
R:=PowerSeriesRing(Integers(), 80);
Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[10, 14]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
def A017890_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^10+x^15) ).list()
A017890_list(80) # G. C. Greubel, Nov 06 2024
A017891
Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 2, 3, 6, 10, 15, 21, 25, 27, 27, 25, 22, 19, 20, 26, 38, 57, 80, 104, 125, 140, 147, 145, 140, 139, 150, 182, 240, 325, 430, 544, 653, 741, 801, 836, 861, 903, 996, 1176, 1466, 1871, 2374, 2933, 3494, 4005, 4436
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1).
-
R:=PowerSeriesRing(Integers(), 80);
Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1/(1 - Total[x^Range[10, 15]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
def A017891_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^10+x^16) ).list()
A017891_list(80) # G. C. Greubel, Nov 06 2024
A017892
Expansion of 1/(1 - x^10 - x^11 - x^12 - x^13 - x^14 - x^15 - x^16).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 4, 5, 7, 10, 15, 21, 28, 33, 36, 37, 37, 37, 38, 41, 50, 66, 90, 119, 150, 180, 207, 229, 246, 259, 276, 306, 359, 441, 554, 696, 862, 1041, 1221, 1390, 1547, 1703, 1882, 2116, 2441, 2891, 3494, 4259, 5174, 6205
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1).
-
R:=PowerSeriesRing(Integers(), 80);
Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16))); // Vincenzo Librandi, Jul 01 2013
-
a[0]:= 1:
for i from 1 to 9 do a[i]:= 0 od:
for i from 10 to 15 do a[i]:= 1 od:
for i from 16 to 1000 do a[i]:= add(a[j],j=i-16 .. i-10) od:
seq(a[i],i=0..1000); # Robert Israel, Aug 15 2014
-
(* From Harvey P. Dale, Mar 04 2013: (Start) *)
CoefficientList[Series[1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16),{x,0,80}],x]
LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1}, {1,0,0,0,0,0,0,0,0,0,1, 1,1,1,1,1},70] (* End *)
CoefficientList[Series[1/(1 - Total[x^Range[10, 16]]), {x,0,80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
my(x='x+O('x^80)); Vec(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16)) \\ Altug Alkan, Oct 04 2018
-
def A017892_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^10+x^17) ).list()
A017892_list(80) # G. C. Greubel, Nov 06 2024
A017893
Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 6, 7, 9, 12, 16, 21, 28, 36, 42, 46, 49, 52, 56, 62, 71, 84, 105, 135, 171, 210, 250, 290, 330, 371, 414, 462, 525, 614, 736, 894, 1088, 1316, 1575, 1862, 2171, 2498, 2852, 3256, 3742, 4346, 5104, 6049, 7210, 8610
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1).
-
R:=PowerSeriesRing(Integers(), 80);
Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17))); // Vincenzo Librandi, Jul 01 2013
-
a:= n-> (Matrix(17, (i, j)-> if (i=j-1) or (j=1 and i in [$10..17]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..80); # Alois P. Heinz, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[10, 17]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1},{1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1},80] (* Harvey P. Dale, Dec 02 2024 *)
-
def A017893_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^10+x^18) ).list()
A017893_list(80) # G. C. Greubel, Nov 06 2024
A017894
Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 8, 9, 11, 14, 18, 23, 29, 36, 45, 52, 58, 64, 71, 80, 92, 108, 129, 156, 193, 237, 286, 339, 396, 458, 527, 606, 699, 810, 951, 1130, 1352, 1620, 1936, 2302, 2721, 3198, 3741, 4358, 5072, 5916, 6929, 8153, 9631
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1).
-
R:=PowerSeriesRing(Integers(), 80);
Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18))); // Vincenzo Librandi, Jul 01 2013
-
a:= n-> (Matrix(18, (i, j)-> if (i=j-1) or (j=1 and i in [$10..18]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..80); # Alois P. Heinz, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[10, 18]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
def A017894_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^10+x^19) ).list()
A017894_list(80) # G. C. Greubel, Nov 06 2024
A017895
Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 13, 16, 20, 25, 31, 38, 46, 55, 64, 73, 83, 95, 110, 129, 153, 183, 220, 265, 319, 381, 451, 530, 620, 724, 846, 991, 1165, 1375, 1630, 1938, 2306, 2741, 3251, 3846, 4539, 5347, 6292, 7402, 8713, 10270
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1).
-
R:=PowerSeriesRing(Integers(), 80);
Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[10, 19]]), {x, 0, 70}], x] (* Vincenzo Librandi Jul 01 2013 *)
LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1},{1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1},80] (* Harvey P. Dale, Apr 07 2025 *)
-
def A017895_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^10+x^20) ).list()
A017895_list(81) # G. C. Greubel, Nov 08 2024
A017896
Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19-x^20).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 18, 22, 27, 33, 40, 48, 57, 68, 79, 92, 107, 125, 147, 174, 207, 247, 295, 353, 420, 499, 591, 698, 823, 970, 1144, 1351, 1598, 1894, 2246, 2666, 3165, 3756, 4454, 5277, 6247, 7391, 8742, 10341, 12234
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1).
-
R:=PowerSeriesRing(Integers(), 80); Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19-x^20))); // Vincenzo Librandi, Jul 01 2013
-
a:= n-> (Matrix(20, (i, j)-> if (i=j-1) or (j=1 and i in [$10..20]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..80); # Alois P. Heinz, Aug 04 2008
-
CoefficientList[Series[1/(1 -Total[x^Range[10, 20]]), {x,0,80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1},{1,0,0,0,0,0,0,0, 0,0,1,1,1,1,1,1,1,1,1,1}, 81] (* Harvey P. Dale, Oct 21 2016 *)
-
def A017896_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^10+x^21) ).list()
A017896_list(81) # G. C. Greubel, Nov 08 2024
A017888
Expansion of 1/(1 - x^10 - x^11 - x^12).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0, 1, 3, 6, 7, 6, 3, 1, 0, 0, 0, 1, 4, 10, 16, 19, 16, 10, 4, 1, 0, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 2, 6, 21, 50, 90, 126, 141, 126, 90, 50
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1).
-
m:=80; R:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^10-x^11-x^12))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[10, 12]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
my(x='x+O('x^80)); Vec(1/(1-x^10-x^11-x^12)) \\ Altug Alkan, Oct 04 2018
-
def A017888_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^10+x^(13)) ).list()
A017888_list(80) # G. C. Greubel, Sep 25 2024
Showing 1-10 of 11 results.
Comments