cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A017886 Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 19, 23, 28, 34, 41, 49, 59, 72, 86, 102, 122, 146, 175, 210, 252, 303, 366, 441, 529, 635, 762, 914, 1096, 1314, 1576, 1893, 2275
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n into parts 9, 10, 11, ..., 19. - Joerg Arndt, Oct 12 2014

Crossrefs

Programs

  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19))); // Vincenzo Librandi, Jul 01 2013
    
  • Mathematica
    CoefficientList[Series[1 / (1 - Total[x^Range[9, 19]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 01 2013 *)
  • SageMath
    def A017886_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^9+x^(20)) ).list()
    A017886_list(70) # G. C. Greubel, Sep 25 2024

Formula

a(n) = a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17) +a(n-18) +a(n-19) for n>18. - Vincenzo Librandi, Jul 01 2013
a(n) = a(n-1) +a(n-9) -a(n-20) for n>19. - Tani Akinari, Sep 29 2014

A306713 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2019

Keywords

Comments

A(n,k) is the number of compositions of n into parts k and k+1.

Examples

			Square array begins:
    1, 1, 1, 1, 1, 1, 1, 1, 1, ...
    1, 0, 0, 0, 0, 0, 0, 0, 0, ...
    2, 1, 0, 0, 0, 0, 0, 0, 0, ...
    3, 1, 1, 0, 0, 0, 0, 0, 0, ...
    5, 1, 1, 1, 0, 0, 0, 0, 0, ...
    8, 2, 0, 1, 1, 0, 0, 0, 0, ...
   13, 2, 1, 0, 1, 1, 0, 0, 0, ...
   21, 3, 2, 0, 0, 1, 1, 0, 0, ...
   34, 4, 1, 1, 0, 0, 1, 1, 0, ...
   55, 5, 1, 2, 0, 0, 0, 1, 1, ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(j,n-k*j).

A017890 Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 7, 7, 11, 20, 35, 52, 68, 80, 85, 80, 69, 57, 50, 55, 80, 125, 186, 255, 320, 365, 382, 371, 341, 311, 311, 367, 496, 701, 966, 1251, 1508, 1693, 1779, 1770, 1716, 1701, 1826
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13 and 14. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Cf. A017887.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80);
    Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14))); // Vincenzo Librandi, Jul 01 2013
    
  • Mathematica
    CoefficientList[Series[1 / (1 - Total[x^Range[10, 14]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
  • SageMath
    def A017890_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^10+x^15) ).list()
    A017890_list(80) # G. C. Greubel, Nov 06 2024

Formula

a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) for n>13. - Vincenzo Librandi, Jul 01 2013

A017891 Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 2, 3, 6, 10, 15, 21, 25, 27, 27, 25, 22, 19, 20, 26, 38, 57, 80, 104, 125, 140, 147, 145, 140, 139, 150, 182, 240, 325, 430, 544, 653, 741, 801, 836, 861, 903, 996, 1176, 1466, 1871, 2374, 2933, 3494, 4005, 4436
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14 and 15. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Cf. A017887.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80);
    Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15))); // Vincenzo Librandi, Jul 01 2013
    
  • Mathematica
    CoefficientList[Series[1/(1 - Total[x^Range[10, 15]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
  • SageMath
    def A017891_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^10+x^16) ).list()
    A017891_list(80) # G. C. Greubel, Nov 06 2024

Formula

a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) for n>14. - Vincenzo Librandi, Jul 01 2013

A017892 Expansion of 1/(1 - x^10 - x^11 - x^12 - x^13 - x^14 - x^15 - x^16).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 4, 5, 7, 10, 15, 21, 28, 33, 36, 37, 37, 37, 38, 41, 50, 66, 90, 119, 150, 180, 207, 229, 246, 259, 276, 306, 359, 441, 554, 696, 862, 1041, 1221, 1390, 1547, 1703, 1882, 2116, 2441, 2891, 3494, 4259, 5174, 6205
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14, 15 and 16. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Cf. A017887.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80);
    Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16))); // Vincenzo Librandi, Jul 01 2013
    
  • Maple
    a[0]:= 1:
    for i from 1 to 9 do a[i]:= 0 od:
    for i from 10 to 15 do a[i]:= 1 od:
    for i from 16 to 1000 do a[i]:= add(a[j],j=i-16 .. i-10) od:
    seq(a[i],i=0..1000); # Robert Israel, Aug 15 2014
  • Mathematica
    (* From Harvey P. Dale, Mar 04 2013: (Start) *)
    CoefficientList[Series[1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16),{x,0,80}],x]
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1}, {1,0,0,0,0,0,0,0,0,0,1, 1,1,1,1,1},70] (* End *)
    CoefficientList[Series[1/(1 - Total[x^Range[10, 16]]), {x,0,80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16)) \\ Altug Alkan, Oct 04 2018
    
  • SageMath
    def A017892_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^10+x^17) ).list()
    A017892_list(80) # G. C. Greubel, Nov 06 2024

Formula

a(n) = a(n-10) + a(n-11) + a(n-12) + a(n-13) + a(n-14) + a(n-15) + a(n-16); a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=1, a(11)=1, a(12)=1, a(13)=1, a(14)=1, a(15)=1. - Harvey P. Dale, Mar 04 2013

A017893 Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 6, 7, 9, 12, 16, 21, 28, 36, 42, 46, 49, 52, 56, 62, 71, 84, 105, 135, 171, 210, 250, 290, 330, 371, 414, 462, 525, 614, 736, 894, 1088, 1316, 1575, 1862, 2171, 2498, 2852, 3256, 3742, 4346, 5104, 6049, 7210, 8610
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14, 15, 16 and 17. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Cf. A017887.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80);
    Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17))); // Vincenzo Librandi, Jul 01 2013
    
  • Maple
    a:= n-> (Matrix(17, (i, j)-> if (i=j-1) or (j=1 and i in [$10..17]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..80);  # Alois P. Heinz, Jul 01 2013
  • Mathematica
    CoefficientList[Series[1 / (1 - Total[x^Range[10, 17]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1},{1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1},80] (* Harvey P. Dale, Dec 02 2024 *)
  • SageMath
    def A017893_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^10+x^18) ).list()
    A017893_list(80) # G. C. Greubel, Nov 06 2024

Formula

a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17), n>16. - Vincenzo Librandi, Jul 01 2013

A017894 Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 8, 9, 11, 14, 18, 23, 29, 36, 45, 52, 58, 64, 71, 80, 92, 108, 129, 156, 193, 237, 286, 339, 396, 458, 527, 606, 699, 810, 951, 1130, 1352, 1620, 1936, 2302, 2721, 3198, 3741, 4358, 5072, 5916, 6929, 8153, 9631
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14, 15, 16, 17 and 18. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Cf. A017887.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80);
    Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18))); // Vincenzo Librandi, Jul 01 2013
    
  • Maple
    a:= n-> (Matrix(18, (i, j)-> if (i=j-1) or (j=1 and i in [$10..18]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..80);  # Alois P. Heinz, Jul 01 2013
  • Mathematica
    CoefficientList[Series[1 / (1 - Total[x^Range[10, 18]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
  • SageMath
    def A017894_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^10+x^19) ).list()
    A017894_list(80) # G. C. Greubel, Nov 06 2024

Formula

a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +Self(n-16) +a(n-17) +a(n-18), for n>17. - Vincenzo Librandi, Jul 01 2013

A017895 Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 13, 16, 20, 25, 31, 38, 46, 55, 64, 73, 83, 95, 110, 129, 153, 183, 220, 265, 319, 381, 451, 530, 620, 724, 846, 991, 1165, 1375, 1630, 1938, 2306, 2741, 3251, 3846, 4539, 5347, 6292, 7402, 8713, 10270
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Cf. A017887.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80);
    Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19))); // Vincenzo Librandi, Jul 01 2013
    
  • Mathematica
    CoefficientList[Series[1 / (1 - Total[x^Range[10, 19]]), {x, 0, 70}], x] (* Vincenzo Librandi Jul 01 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1},{1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1},80] (* Harvey P. Dale, Apr 07 2025 *)
  • SageMath
    def A017895_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^10+x^20) ).list()
    A017895_list(81) # G. C. Greubel, Nov 08 2024

Formula

a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17) +a(n-18) +a(n-19) for n>18. - Vincenzo Librandi, Jul 01 2013

A017896 Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19-x^20).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 18, 22, 27, 33, 40, 48, 57, 68, 79, 92, 107, 125, 147, 174, 207, 247, 295, 353, 420, 499, 591, 698, 823, 970, 1144, 1351, 1598, 1894, 2246, 2666, 3165, 3756, 4454, 5277, 6247, 7391, 8742, 10341, 12234
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Cf. A017887.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19-x^20))); // Vincenzo Librandi, Jul 01 2013
    
  • Maple
    a:= n-> (Matrix(20, (i, j)-> if (i=j-1) or (j=1 and i in [$10..20]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..80);  # Alois P. Heinz, Aug 04 2008
  • Mathematica
    CoefficientList[Series[1/(1 -Total[x^Range[10, 20]]), {x,0,80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1},{1,0,0,0,0,0,0,0, 0,0,1,1,1,1,1,1,1,1,1,1}, 81] (* Harvey P. Dale, Oct 21 2016 *)
  • SageMath
    def A017896_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^10+x^21) ).list()
    A017896_list(81) # G. C. Greubel, Nov 08 2024

Formula

a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17) +a(n-18) +a(n-19) +a(n-20), for n>19. - Vincenzo Librandi, Jul 01 2013

A017888 Expansion of 1/(1 - x^10 - x^11 - x^12).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0, 1, 3, 6, 7, 6, 3, 1, 0, 0, 0, 1, 4, 10, 16, 19, 16, 10, 4, 1, 0, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 2, 6, 21, 50, 90, 126, 141, 126, 90, 50
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 10, 11 and 12. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Programs

  • Magma
    m:=80; R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!(1/(1-x^10-x^11-x^12))); // Vincenzo Librandi, Jul 01 2013
    
  • Mathematica
    CoefficientList[Series[1 / (1 - Total[x^Range[10, 12]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/(1-x^10-x^11-x^12)) \\ Altug Alkan, Oct 04 2018
    
  • SageMath
    def A017888_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^10+x^(13)) ).list()
    A017888_list(80) # G. C. Greubel, Sep 25 2024

Formula

a(n) = a(n-10) + a(n-11) + a(n-12), for n > 11. - Vincenzo Librandi, Jul 01 2013
Showing 1-10 of 11 results. Next