cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017893 Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 6, 7, 9, 12, 16, 21, 28, 36, 42, 46, 49, 52, 56, 62, 71, 84, 105, 135, 171, 210, 250, 290, 330, 371, 414, 462, 525, 614, 736, 894, 1088, 1316, 1575, 1862, 2171, 2498, 2852, 3256, 3742, 4346, 5104, 6049, 7210, 8610
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14, 15, 16 and 17. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Cf. A017887.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80);
    Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17))); // Vincenzo Librandi, Jul 01 2013
    
  • Maple
    a:= n-> (Matrix(17, (i, j)-> if (i=j-1) or (j=1 and i in [$10..17]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..80);  # Alois P. Heinz, Jul 01 2013
  • Mathematica
    CoefficientList[Series[1 / (1 - Total[x^Range[10, 17]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1},{1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1},80] (* Harvey P. Dale, Dec 02 2024 *)
  • SageMath
    def A017893_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^10+x^18) ).list()
    A017893_list(80) # G. C. Greubel, Nov 06 2024

Formula

a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17), n>16. - Vincenzo Librandi, Jul 01 2013