cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A221942 a(n) = floor(sqrt(5*2^n)).

Original entry on oeis.org

2, 3, 4, 6, 8, 12, 17, 25, 35, 50, 71, 101, 143, 202, 286, 404, 572, 809, 1144, 1619, 2289, 3238, 4579, 6476, 9158, 12952, 18317, 25905, 36635, 51810, 73271, 103621, 146542, 207243, 293085, 414486, 586171, 828972, 1172343, 1657944, 2344687, 3315888, 4689374, 6631776, 9378748, 13263553, 18757497, 26527107
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2013

Keywords

Comments

Theorem 3 of Dubickas implies that infinitely many terms of this sequence are divisible by 2 or 3 (and hence infinitely many composites). - Charles R Greathouse IV, Feb 04 2016

References

  • Artūras Dubickas, Prime and composite integers close to powers of a number, Monatsh. Math. 158:3 (2009), pp. 271-284.

Crossrefs

Programs

A221946 a(n) = floor(sqrt(2*7^n)).

Original entry on oeis.org

1, 3, 9, 26, 69, 183, 485, 1283, 3395, 8983, 23768, 62886, 166380, 440202, 1164665, 3081415, 8152659, 21569910, 57068618, 150989371, 399480328, 1056925602, 2796362297, 7398479214, 19574536080, 51789354498, 137021752562, 362525481486, 959152267937, 2537678370405, 6714065875561, 17763748592841
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2013

Keywords

Crossrefs

Programs

A077626 Largest term in periodic part of continued fraction expansion of square root of 1+3^n or 0 if 1+3^n is square.

Original entry on oeis.org

0, 6, 10, 18, 30, 54, 92, 162, 280, 486, 840, 1458, 2524, 4374, 7574, 13122, 22726, 39366, 68182, 118098, 204550, 354294, 613654, 1062882, 1840964, 3188646, 5522896, 9565938, 16568690, 28697814, 49706070, 86093442, 149118214, 258280326, 447354646, 774840978
Offset: 1

Views

Author

Labos Elemer, Nov 13 2002

Keywords

Comments

a(n) = 0 iff n = 1, as a consequence of Catalan's conjecture or Mihăilescu's theorem. - Bernard Schott, Apr 25 2022

Crossrefs

Equals 2*A017913(n) for n > 1.

Programs

  • Mathematica
    Table[Max[Last[ContinuedFraction[Sqrt[1+3^u]]]], {u, 1, 32}]
  • PARI
    a(n) = if (n==1, 0, 2*sqrtint(3^n)); \\ Michel Marcus, Apr 20 2022

Extensions

a(1) changed and definition clarified by Chai Wah Wu, Sep 18 2021
a(31)-a(36) from Chai Wah Wu, Apr 20 2022

A128444 Array T by antidiagonals: T(n,k)=Floor(k*3^(n/2)).

Original entry on oeis.org

1, 3, 3, 5, 6, 5, 6, 9, 10, 9, 8, 12, 15, 18, 15, 10, 15, 20, 27, 31, 27, 12, 18, 25, 36, 46, 54, 46, 13, 21, 31, 45, 62, 81, 93, 81, 15, 24, 36, 54, 77, 108, 140, 162, 140, 17, 27, 41, 63, 93, 135, 187, 243, 280, 243, 19, 30, 46, 72, 109, 162, 233, 324, 420, 486, 420, 20, 33
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2007

Keywords

Comments

Row 1 = A022838; Row 2 = A008585; Column 1 = A017913; T(n,n) = A128443(n).

Examples

			Northwest corner:
1 3 5 6 8
3 6 9 12 15
5 10 15 20 25
9 18 27 36 45
		

Crossrefs

Cf. A128443.

A221944 Floor(sqrt(2*3^n)).

Original entry on oeis.org

1, 2, 4, 7, 12, 22, 38, 66, 114, 198, 343, 595, 1030, 1785, 3092, 5357, 9278, 16071, 27835, 48213, 83507, 144639, 250523, 433919, 751571, 1301759, 2254713, 3905277, 6764139, 11715833, 20292418, 35147500, 60877256, 105442501, 182631769, 316327504, 547895309, 948982513, 1643685929, 2846947541, 4931057788
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2013

Keywords

Crossrefs

Programs

A221945 a(n) = floor(sqrt(2*5^n)).

Original entry on oeis.org

1, 3, 7, 15, 35, 79, 176, 395, 883, 1976, 4419, 9882, 22097, 49410, 110485, 247052, 552427, 1235264, 2762135, 6176323, 13810679, 30881617, 69053396, 154408088, 345266983, 772040444, 1726334915, 3860202221, 8631674575, 19301011109, 43158372875, 96505055547, 215791864375, 482525277735
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2013

Keywords

Comments

Floor of norm of (1 + i) * (1 + 2i)^n. - Jon Perry, Dec 06 2013

Crossrefs

Programs

A255616 Table read by antidiagonals, T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 4, 5, 4, 1, 1, 2, 5, 8, 9, 5, 1, 1, 2, 6, 11, 16, 15, 8, 1, 1, 2, 7, 14, 25, 32, 27, 11, 1, 1, 3, 8, 18, 36, 55, 64, 46, 16, 1, 1, 3, 9, 22, 49, 88, 125, 128, 81, 22, 1, 1, 3, 10, 27, 64, 129, 216, 279, 256, 140, 32, 1, 1, 3, 11, 31, 81, 181, 343, 529, 625, 512, 243, 45, 1
Offset: 0

Views

Author

Kival Ngaokrajang, Feb 28 2015

Keywords

Examples

			See table in the links.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Floor[Sqrt[k^n]]; Table[T[k, n + 1 - k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    {for(i=1,20,for(n=0,i-1,a=floor(sqrt((i-n)^n));print1(a,", ")))}

Formula

T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1.

Extensions

Terms a(81) onward added by G. C. Greubel, Dec 30 2017

A221943 Floor(sqrt(7*2^n)).

Original entry on oeis.org

2, 3, 5, 7, 10, 14, 21, 29, 42, 59, 84, 119, 169, 239, 338, 478, 677, 957, 1354, 1915, 2709, 3831, 5418, 7662, 10836, 15325, 21673, 30651, 43347, 61303, 86695, 122606, 173391, 245213, 346783, 490426, 693567, 980853, 1387135, 1961706, 2774271, 3923412, 5548542, 7846824, 11097085, 15693648, 22194170, 31387297
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2013

Keywords

Comments

Theorem 3 of Dubickas implies that infinitely many terms of this sequence are divisible by 2 or 3 (and hence infinitely many composites). - Charles R Greathouse IV, Feb 04 2016

References

  • Artūras Dubickas, Prime and composite integers close to powers of a number, Monatsh. Math. 158:3 (2009), pp. 271-284.

Crossrefs

Programs

  • Mathematica
    Floor[Sqrt[7*2^Range[0,50]]] (* Harvey P. Dale, Apr 11 2018 *)
  • PARI
    a(n)=sqrtint(7<Charles R Greathouse IV, Apr 18 2013
Showing 1-8 of 8 results.