2, 10, 50, 230, 1150, 5050, 22310, 106030, 510050, 2065450, 10236350
Offset: 1
a(1) = 2 because the second row of A237593 is [2, 2], and the first row of the same triangle is [1, 1], therefore between both symmetric Dyck paths there is only one part: [3], equaling the sum of the divisors of 2: 1 + 2 = 3. See below:
.
. _ _ 3
. |_ |
. |_|
.
.
a(2) = 10 because the 10th row of A237593 is [6, 2, 1, 1, 1, 1, 2, 6], and the 9th row of the same triangle is [5, 2, 2, 2, 2, 5], therefore between both symmetric Dyck paths there are two parts: [9, 9]. Also there are no even numbers k < 10 whose symmetric representation of sigma(k) has two parts. Note that the sum of these parts is 9 + 9 = 18, equaling the sum of the divisors of 10: 1 + 2 + 5 + 10 = 18. See below:
.
. _ _ _ _ _ _ 9
. |_ _ _ _ _ |
. | |_
. |_ _|_
. | |_ _ 9
. |_ _ |
. | |
. | |
. | |
. | |
. |_|
.
a(3) = 50 because the 50th row of A237593 is [26, 9, 4, 3, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 3, 4, 9, 26], and the 49th row of the same triangle is [25, 9, 5, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 5, 9, 25], therefore between both symmetric Dyck paths there are three parts: [39, 15, 39]. Also there are no even numbers k < 50 whose symmetric representation of sigma(k) has three parts. Note that the sum of these parts is 39 + 15 + 39 = 93, equaling the sum of the divisors of 50: 1 + 2 + 5 + 10 + 25 + 50 = 93. (The diagram of the symmetric representation of sigma(50) = 93 is too large to include.)
Comments