cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018805 Number of elements in the set {(x,y): 1 <= x,y <= n, gcd(x,y)=1}.

Original entry on oeis.org

1, 3, 7, 11, 19, 23, 35, 43, 55, 63, 83, 91, 115, 127, 143, 159, 191, 203, 239, 255, 279, 299, 343, 359, 399, 423, 459, 483, 539, 555, 615, 647, 687, 719, 767, 791, 863, 899, 947, 979, 1059, 1083, 1167, 1207, 1255, 1299, 1391, 1423, 1507, 1547, 1611, 1659, 1763
Offset: 1

Views

Author

Keywords

Comments

Number of positive rational numbers of height at most n, where the height of p/q is max(p, q) when p and q are relatively prime positive integers. - Charles R Greathouse IV, Jul 05 2012
The number of ordered pairs (i,j) with 1<=i<=n, 1<=j<=n, gcd(i,j)=d is a(floor(n/d)). - N. J. A. Sloane, Jul 29 2012
Equals partial sums of A140434 (1, 2, 4, 4, 8, 4, 12, 8, ...) and row sums of triangle A143469. - Gary W. Adamson, Aug 17 2008
Number of distinct solutions to k*x+h=0, where 1 <= k,h <= n. - Giovanni Resta, Jan 08 2013
a(n) is the number of rational numbers which can be constructed from the set of integers between 1 and n, without combination of multiplication and division. a(3) = 7 because {1, 2, 3} can only create {1/3, 1/2, 2/3, 1, 3/2, 2, 3}. - Bernard Schott, Jul 07 2019

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 110-112.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954. See Theorem 332.

Crossrefs

Cf. A177853 (partial sums).
The main diagonal of A331781, also of A333295.

Programs

  • Haskell
    a018805 n = length [()| x <- [1..n], y <- [1..n], gcd x y == 1]
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Magma
    /* based on the first formula */ A018805:=func< n | 2*&+[ EulerPhi(k): k in [1..n] ]-1 >; [ A018805(n): n in [1..60] ]; // Klaus Brockhaus, Jan 27 2011
    
  • Magma
    /* based on the second formula */ A018805:=func< n | n eq 1 select 1 else n^2-&+[ $$(n div j): j in [2..n] ] >; [ A018805(n): n in [1..60] ]; // Klaus Brockhaus, Feb 07 2011
    
  • Maple
    N:= 1000; # to get the first N entries
    P:= Array(1..N,numtheory:-phi);
    A:= map(t -> 2*round(t)-1, Statistics:-CumulativeSum(P));
    convert(A,list); # Robert Israel, Jul 16 2014
  • Mathematica
    FoldList[ Plus, 1, 2 Array[ EulerPhi, 60, 2 ] ] (* Olivier Gérard, Aug 15 1997 *)
    Accumulate[2*EulerPhi[Range[60]]]-1 (* Harvey P. Dale, Oct 21 2013 *)
  • PARI
    a(n)=sum(k=1,n,moebius(k)*(n\k)^2)
    
  • PARI
    A018805(n)=2 *sum(j=1, n, eulerphi(j)) - 1;
    for(n=1, 99, print1(A018805(n), ", ")); /* show terms */
    
  • PARI
    a(n)=my(s); forsquarefree(k=1,n, s+=moebius(k)*(n\k[1])^2); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import sieve
    def A018805(n): return 2*sum(t for t in sieve.totientrange(1,n+1)) - 1 # Chai Wah Wu, Mar 23 2021
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A018805(n): # based on second formula
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A018805(k1)
            j, k1 = j2, n//j2
        return n*(n-1)-c+j # Chai Wah Wu, Mar 24 2021

Formula

a(n) = 2*(Sum_{j=1..n} phi(j)) - 1.
a(n) = n^2 - Sum_{j=2..n} a(floor(n/j)).
a(n) = 2*A015614(n) + 1. - Reinhard Zumkeller, Apr 08 2006
a(n) = 2*A002088(n) - 1. - Hugo van der Sanden, Nov 22 2008
a(n) ~ (1/zeta(2)) * n^2 = (6/Pi^2) * n^2 as n goes to infinity (zeta is the Riemann zeta function, A013661, and the constant 6/Pi^2 is 0.607927..., A059956). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 18 2001
a(n) ~ 6*n^2/Pi^2 + O(n*log n). - N. J. A. Sloane, May 31 2020
a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^2. - Benoit Cloitre, May 11 2003
a(n) = A000290(n) - A100613(n) = A015614(n) + A002088(n). - Reinhard Zumkeller, Jan 21 2013
a(n) = A242114(floor(n/k),1), 1<=k<=n; particularly a(n) = A242114(n,1). - Reinhard Zumkeller, May 04 2014
a(n) = 2 * A005728(n) - 3. - David H Post, Dec 20 2016
a(n) ~ 6*n^2/Pi^2, cf. A059956. [Hardy and Wright] - M. F. Hasler, Jan 20 2017
G.f.: (1/(1 - x)) * (-x + 2 * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^2). - Ilya Gutkovskiy, Feb 14 2020

Extensions

More terms from Reinhard Zumkeller, Apr 08 2006
Link to Moree's paper corrected by Peter Luschny, Aug 08 2009