cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001235 Taxi-cab numbers: sums of 2 cubes in more than 1 way.

Original entry on oeis.org

1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977
Offset: 1

Views

Author

Keywords

Comments

From Wikipedia: "1729 is known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words: 'I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."'"
A011541 gives another version of "taxicab numbers".
If n is in this sequence, then n*k^3 is also in this sequence for all k > 0. So this sequence is obviously infinite. - Altug Alkan, May 09 2016

Examples

			4104 belongs to the sequence as 4104 = 2^3 + 16^3 = 9^3 + 15^3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section D1.
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
  • Ya. I. Perelman, Algebra can be fun, pp. 142-143.
  • H. W. Richmond, On integers which satisfy the equation t^3 +- x^3 +- y^3 +- z^3, Trans. Camb. Phil. Soc., 22 (1920), 389-403, see p. 402.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165.

Crossrefs

Subsequence of A003325.
Cf. A007692, A008917, A011541, A018786, A018850 (primitive solutions), A051347 (allows negatives), A343708, A360619.
Solutions in greater numbers of ways:
(>2): A018787 (A003825 for primitive, A023050 for coprime),
(>3): A023051 (A003826 for primitive),
(>4): A051167 (A155057 for primitive).

Programs

  • Mathematica
    Select[Range[750000],Length[PowersRepresentations[#,2,3]]>1&] (* Harvey P. Dale, Nov 25 2014, with correction by Zak Seidov, Jul 13 2015 *)
  • PARI
    is(n)=my(t);for(k=ceil((n/2)^(1/3)),(n-.4)^(1/3),if(ispower(n-k^3,3),if(t,return(1),t=1)));0 \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    T=thueinit(x^3+1,1);
    is(n)=my(v=thue(T,n)); sum(i=1,#v,v[i][1]>=0 && v[i][2]>=v[i][1])>1 \\ Charles R Greathouse IV, May 09 2016

A202679 Numbers that are sums of two coprime positive cubes.

Original entry on oeis.org

2, 9, 28, 35, 65, 91, 126, 133, 152, 189, 217, 341, 344, 351, 370, 407, 468, 513, 539, 559, 637, 730, 737, 793, 854, 855, 1001, 1027, 1072, 1241, 1332, 1339, 1343, 1358, 1395, 1456, 1547, 1674, 1729, 1843, 1853, 2060, 2071, 2198, 2205, 2224, 2261, 2322, 2331, 2413
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 06 2012

Keywords

Comments

Not a subsequence of A020898: non-cubefree members of this sequence include 152, 189, 344, 351, 513, 1072. - Robert Israel, Mar 16 2016

Examples

			28 is in the sequence since 1^3 + 3^3 = 28 and (1, 3) = 1.
		

Crossrefs

Subsequence of A003325.

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S:= {2,seq(seq(x^3 + y^3, y = select(t -> igcd(t,x)=1, [$x+1 .. floor((N - x^3)^(1/3))])), x = 1 .. floor((N/2)^(1/3)))}:
    sort(convert(S,list)); # Robert Israel, Mar 15 2016
  • Mathematica
    nn = 2500; Union[Flatten[Table[If[CoprimeQ[x, y] == True, x^3 + y^3, {}], {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]]
    Select[Range@ 2500, Length[PowersRepresentations[#, 2, 3] /. {{0, } -> Nothing, {a, b_} /; ! CoprimeQ[a, b] -> Nothing}] > 0 &] (* Michael De Vlieger, Mar 15 2016 *)
  • PARI
    is(n)=for(k=1,(n\2+.5)^(1/3),if(gcd(k,n)==1&&ispower(n-k^3, 3), return(1)));0 \\ Charles R Greathouse IV, Apr 13 2012
    
  • PARI
    list(lim)=my(v=List()); forstep(x=1, lim^(1/3), 2, forstep(y=2,(lim-x^3+.5)^(1/3), 2, if(gcd(x,y)==1, listput(v,x^3+y^3))); forstep(y=1, min((lim-x^3+.5)^(1/3),x), 2, if(gcd(x,y)==1, listput(v,x^3+y^3)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Dec 05 2012

Formula

Erdős & Mahler shows that a(n) < kn^(3/2) for some k. Erdős later gives an elementary proof. - Charles R Greathouse IV, Dec 05 2012

A293647 Positive numbers that are the sum of two (possibly negative) cubes in at least 2 ways (primitive solutions).

Original entry on oeis.org

91, 152, 189, 217, 513, 721, 728, 999, 1027, 1729, 3087, 3367, 4104, 4706, 4921, 4977, 5256, 5859, 6832, 7657, 8587, 8911, 9919, 10621, 10712, 12663, 12691, 12824, 14911, 15093, 15561, 16120, 16263, 20683, 21014, 23058, 23877, 25669, 27937, 28063, 31519, 32984
Offset: 1

Views

Author

Rosalie Fay, Oct 16 2017

Keywords

Comments

Primitive means that the 4 summands are coprime.
Not every term is the sum of two coprime cubes.
a(1) = A047696(2).

Examples

			189 = 4^3 + 5^3 = 6^3 + (-3)^3 and 4, 5, 6, -3 are coprime, so 189 is in the sequence.
35208 = 34^3 + (-16)^3 = 33^3 + (-9)^3 and 34, -16, 33, -9 are coprime, so 35208 is in the sequence.
		

Crossrefs

Cf. A051347 (all solutions); A018850 (positive cubes); A293648 (only coprime); A293645, A293650

Programs

  • Maple
    g:= proc(s,n) local x;
      x:= s/2 + sqrt(12*n/s-3*s^2)/6;
      if not x::integer then return NULL fi;
      [x,s - x];
    end proc:
    filter:= proc(n)
      local pairs, i,j;
      pairs:= map(g, numtheory:-divisors(n),n);
      for i from 2 to nops(pairs) do
        for j from 1 to i-1 do
          if igcd(op(pairs[i]),op(pairs[j]))=1 then return true fi
      od od;
      false
    end proc:
    select(filter, [seq(seq(9*i+j,j=[1,2,7,8,9]),i=0..4000)]); # Robert Israel, Oct 22 2017
  • Mathematica
    g[s_, n_] := Module[{x}, x = s/2 + Sqrt[12*n/s - 3*s^2]/6;   If[!IntegerQ[x], Return[Nothing]]; {x, s - x}];
    filter[n_] := Module[{pairs, i, j}, pairs = g[#, n]& /@ Divisors[n]; For[i = 2, i <= Length[pairs], i++,For[j = 1, j <= i - 1, j++, If[GCD @@ Join[pairs[[i]], pairs[[j]]] == 1, Return[True]]]]; False];
    Select[Flatten[Table[Table[9*i + j, {j, {1, 2, 7, 8, 9}}], {i, 0, 4000}]], filter] (* Jean-François Alcover, May 28 2023, after Robert Israel *)

A384106 Numbers representable as the sum of 2 cubes in at least 2 ways generated by a parameterized formula involving (7+4*sqrt(3))^n and (7-4*sqrt(3))^n.

Original entry on oeis.org

1009736, 2714690888, 7334904115448, 19818905563705976, 53550675461437475048, 144693905277386048024168, 390962878508814502873889816, 1056203940519850679825934312168, 2853755704387709706549646191448888, 7710144396612746633517746345789261976
Offset: 1

Views

Author

Jamal Agbanwa, May 19 2025

Keywords

Comments

A rapidly growing sequence of integers, each equal to x(n)^3 + y(n)^3 = u(n)^3 + w(n)^3 for distinct positive integers x(n), y(n), u(n), w(n), generated from a parameterized expression. Values omit small classical examples (like 1729) and begin at much larger values and is therefore a parameterized subset of solutions to A001235.

Examples

			For n = 7, a(7) = x(n)^3 + y(n)^3 = ((-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^7 + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^7)/4 + 3)^3 + ((-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^7 + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^7)/4)^3 = 390962878508814502873889816.
		

Crossrefs

Subset of A001235.

Formula

a(n) = x(n)^3 + y(n)^3 = u(n)^3 + w(n)^3 where:
x(n) = (-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^n + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^n)/4 + 3,
y(n) = (-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^n + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^n)/4,
u(n) = (-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^n + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^n)/4, abd
w(n) = (-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^n + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^n)/4 + 9.
Showing 1-4 of 4 results.