cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018892 Number of ways to write 1/n as a sum of exactly 2 unit fractions.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 14, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 14, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 23, 2, 5, 8, 7, 5, 14, 2, 8, 5, 14, 2, 18, 2, 5, 8, 8, 5, 14, 2, 14, 5, 5, 2, 23, 5, 5, 5, 11, 2, 23, 5, 8, 5, 5, 5, 17, 2, 8, 8
Offset: 1

Views

Author

Keywords

Comments

Number of elements in the set {(x,y): x|n, y|n, x<=y, gcd(x,y)=1}. Number of divisors of n^2 less than or equal to n. - Vladeta Jovovic, May 03 2002
Equivalently, number of pairs (x,y) such that lcm(x,y)=n. - Benoit Cloitre, May 16 2002
Also, number of right triangles with an integer hypotenuse and height n. - Reinhard Zumkeller, Jul 10 2002
The triangles are to be considered as resting on their hypotenuse, with the height measured to the right angle. - Franklin T. Adams-Watters, Feb 19 2015
a(n) >= 2 for n>=2 because of the identities 1/n = 1/(2*n) + 1/(2*n) = 1/(n+1) + 1/(n*(n+1)). - Lekraj Beedassy, May 04 2004
a(n) is the number of divisors of n^2 that are <= n; e.g., a(12) counts these 8 divisors of 12: 1,2,3,4,6,8,9,12. - Clark Kimberling, Apr 21 2019

Examples

			n=1: 1/1 = 1/2 + 1/2.
n=2: 1/2 = 1/4 + 1/4 = 1/3 + 1/6.
n=3: 1/3 = 1/6 + 1/6 = 1/4 + 1/12.
		

References

  • K. S. Brown, Posting to netnews group sci.math, Aug 17 1996.
  • L. E. Dickson, History of The Theory of Numbers, Vol. 2 p. 690, Chelsea NY 1923.
  • A. M. and I. M. Yaglom, Challenging Mathematical Problems With Elementary Solutions, Vol. 1, Dover, N.Y., 1987, pp. 8 and 60, Problem 19.

Crossrefs

Programs

  • Haskell
    a018892 n = length [d | d <- [1..n], n^2 `mod` d == 0]
    -- Reinhard Zumkeller, Jan 08 2012
    
  • Mathematica
    f[j_, n_] := (Times @@ (j(Last /@ FactorInteger[n]) + 1) + j - 1)/j; Table[f[2, n], {n, 96}] (* Robert G. Wilson v, Aug 03 2005 *)
    a[n_] := (DivisorSigma[0, n^2] + 1)/2; Table[a[n], {n, 1, 99}](* Jean-François Alcover, Dec 19 2011, after Vladeta Jovovic *)
  • PARI
    A018892(n)=(numdiv(n^2)+1)/2 \\ M. F. Hasler, Dec 30 2007
    
  • PARI
    A018892s(n)=local(t=divisors(n^2));vector((#t+1)/2,i,[n+t[i],n+n^2/t[i]]) /* show solutions */ \\ M. F. Hasler, Dec 30 2007
    
  • PARI
    a(n)=sumdiv(n,d,sum(i=1,d,lcm(d,i)==n)) \\ Charles R Greathouse IV, Apr 08 2012
    
  • Python
    from math import prod
    from sympy import factorint
    def A018892(n): return prod((a<<1)+1 for a in factorint(n).values())+1>>1 # Chai Wah Wu, Aug 20 2023

Formula

If n = (p1^a1)(p2^a2)...(pt^at), a(n) = ((2*a1 + 1)(2*a2 + 1) ... (2*at + 1) + 1)/2.
a(n) = (tau(n^2)+1)/2. - Vladeta Jovovic, May 03 2002
a(n) = A063647(n)+1 = A046079(2*n)+1. - Lekraj Beedassy, Dec 01 2003
a(n) = Sum_{d|n} phi(2^omega(d)), where phi is A000010 and omega is A001221. - Enrique Pérez Herrero, Apr 13 2012
a(n) = A000005(n) + A089233(n). - James Spahlinger, Feb 16 2016
a(n) = n + Sum_{i=1..n} sign(n^2 mod -i). - Wesley Ivan Hurt, Apr 07 2021
a(n) = Sum_{d|n} mu(n/d)*A184389(d). - Ridouane Oudra, Feb 22 2022
Sum_{k=1..n} a(k) ~ (n/(2*zeta(2)))*(log(n)^2/2 + log(n)*(3*gamma - 1) + 1 - 3*gamma + 3*gamma^2 - 3*gamma_1 + zeta(2) + (2 - 6*gamma - 2*log(n))*zeta'(2)/zeta(2) + (2*zeta'(2)/zeta(2))^2 - 2*zeta''(2)/zeta(2)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Oct 03 2024

Extensions

More terms from David W. Wilson, Sep 15 1996
First example corrected by Jason Orendorff (jason.orendorff(AT)gmail.com), Jan 02 2009
Incorrect Mathematica program deleted by N. J. A. Sloane, Jul 08 2009