A018892 Number of ways to write 1/n as a sum of exactly 2 unit fractions.
1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 14, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 14, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 23, 2, 5, 8, 7, 5, 14, 2, 8, 5, 14, 2, 18, 2, 5, 8, 8, 5, 14, 2, 14, 5, 5, 2, 23, 5, 5, 5, 11, 2, 23, 5, 8, 5, 5, 5, 17, 2, 8, 8
Offset: 1
Examples
n=1: 1/1 = 1/2 + 1/2. n=2: 1/2 = 1/4 + 1/4 = 1/3 + 1/6. n=3: 1/3 = 1/6 + 1/6 = 1/4 + 1/12.
References
- K. S. Brown, Posting to netnews group sci.math, Aug 17 1996.
- L. E. Dickson, History of The Theory of Numbers, Vol. 2 p. 690, Chelsea NY 1923.
- A. M. and I. M. Yaglom, Challenging Mathematical Problems With Elementary Solutions, Vol. 1, Dover, N.Y., 1987, pp. 8 and 60, Problem 19.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Jorg Brown, Comparison of records in sigma(n)/phi(n) and A018892.
- Roger B. Eggleton, Problem 10501(a), American Mathematical Monthly, Vol. 105, No. 4, (1998), p. 372.
- Project Euler, Problem 379: Least common multiple count.
Crossrefs
Programs
-
Haskell
a018892 n = length [d | d <- [1..n], n^2 `mod` d == 0] -- Reinhard Zumkeller, Jan 08 2012
-
Mathematica
f[j_, n_] := (Times @@ (j(Last /@ FactorInteger[n]) + 1) + j - 1)/j; Table[f[2, n], {n, 96}] (* Robert G. Wilson v, Aug 03 2005 *) a[n_] := (DivisorSigma[0, n^2] + 1)/2; Table[a[n], {n, 1, 99}](* Jean-François Alcover, Dec 19 2011, after Vladeta Jovovic *)
-
PARI
A018892(n)=(numdiv(n^2)+1)/2 \\ M. F. Hasler, Dec 30 2007
-
PARI
A018892s(n)=local(t=divisors(n^2));vector((#t+1)/2,i,[n+t[i],n+n^2/t[i]]) /* show solutions */ \\ M. F. Hasler, Dec 30 2007
-
PARI
a(n)=sumdiv(n,d,sum(i=1,d,lcm(d,i)==n)) \\ Charles R Greathouse IV, Apr 08 2012
-
Python
from math import prod from sympy import factorint def A018892(n): return prod((a<<1)+1 for a in factorint(n).values())+1>>1 # Chai Wah Wu, Aug 20 2023
Formula
If n = (p1^a1)(p2^a2)...(pt^at), a(n) = ((2*a1 + 1)(2*a2 + 1) ... (2*at + 1) + 1)/2.
a(n) = (tau(n^2)+1)/2. - Vladeta Jovovic, May 03 2002
a(n) = Sum_{d|n} phi(2^omega(d)), where phi is A000010 and omega is A001221. - Enrique Pérez Herrero, Apr 13 2012
a(n) = n + Sum_{i=1..n} sign(n^2 mod -i). - Wesley Ivan Hurt, Apr 07 2021
a(n) = Sum_{d|n} mu(n/d)*A184389(d). - Ridouane Oudra, Feb 22 2022
Sum_{k=1..n} a(k) ~ (n/(2*zeta(2)))*(log(n)^2/2 + log(n)*(3*gamma - 1) + 1 - 3*gamma + 3*gamma^2 - 3*gamma_1 + zeta(2) + (2 - 6*gamma - 2*log(n))*zeta'(2)/zeta(2) + (2*zeta'(2)/zeta(2))^2 - 2*zeta''(2)/zeta(2)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Oct 03 2024
Extensions
More terms from David W. Wilson, Sep 15 1996
First example corrected by Jason Orendorff (jason.orendorff(AT)gmail.com), Jan 02 2009
Incorrect Mathematica program deleted by N. J. A. Sloane, Jul 08 2009
Comments