cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018894 Numbers k such that sigma(k)/phi(k) sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 60, 120, 180, 210, 360, 420, 840, 1260, 1680, 2520, 4620, 9240, 13860, 18480, 27720, 55440, 110880, 120120, 180180, 240240, 360360, 720720, 1441440, 2162160, 3603600, 4084080, 4324320, 6126120, 12252240, 24504480, 36756720, 61261200
Offset: 1

Views

Author

Keywords

Comments

Remarkably similar to but ultimately different from A126098. - Jorg Brown and N. J. A. Sloane, Mar 06 2007
Is a(n+1) <= 2*a(n)? Is a(n) divisible by the primorial p# where p is the largest prime divisor of a(n)? Is a(k) divisible by p# for all k > n + 1? (Cf. A002110.) - David A. Corneth, May 22 2016
From Jud McCranie, Nov 28 2017: (Start)
Yes, a(n+1) <= 2*a(n) -- if m is odd, phi(2*m) = phi(m) and sigma(2*m) = 3*sigma(m).
If m is even then phi(2*m) = 2*phi(m) and sigma(2*m) > 2*sigma(m).
So sigma(2*m)/phi(2*m) > sigma(m)/phi(m). (End)
From David A. Corneth, Sep 10 2020: (Start)
Subsequence of A025487.
Let prime(n)# be the product of the first n primes. Then the LCM of the terms <= 10^40 is 89# * 7# * 5# * (3#)^2 * (2#)^4.
We can assume a larger LCM for terms <= 10^60 namely P# * (13#)^3 * (11#) * (5#) * (3#)^2 * (2#)^4. This gives a total of 466 terms <= 10^75 where P is an arbitrary large prime such that P# <= 10^75.
The LCM of these found terms is a proper divisor and for all primes p <= 13 the exponent is less than the assumed prime. Conjecture: These 466 terms are the terms <= 10^75.
For all 240 terms 1 < t <= 10^40 the following holds: there exists a p|t such that t/p is a term. Conjecture: This holds for all terms t > 1.
Using this technique to find terms I get 6522 terms <= 10^1000 and no conflict with terms found above.
See attached file with terms assuming these conjectures. (End)

Crossrefs

Programs

  • Mathematica
    Flatten@ Function[k, FirstPosition[k, #] & /@ Union@ Rest@ FoldList[Max, 0, k]]@ Array[DivisorSigma[1, #]/EulerPhi@ # &, 10^7] (* Michael De Vlieger, May 27 2016, Version 10 *)
  • PARI
    lista(nn) = {mse = 0; for (n=1, nn, se = sigma(n)/eulerphi(n); if (se > mse, print1(n, ", "); mse = se););} \\ Michel Marcus, Jul 10 2015

Extensions

More terms from Jud McCranie, Nov 09 2001
Initial term added by Arkadiusz Wesolowski, Sep 06 2012