cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018896 a(n) = ( a(n-1)*a(n-7) + a(n-4)^2 ) / a(n-8); a(0) = ... = a(7) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 9, 18, 34, 93, 180, 348, 724, 3033, 9666, 24986, 83761, 261033, 1023728, 3923791, 26128126, 105734485, 381740209, 1895904805, 14058722881, 97964968321, 517832518189, 4364261070929, 25225712161101, 181840424632390
Offset: 0

Views

Author

Keywords

Comments

From Vladimir Shevelev, Apr 04 2016: (Start)
For k >= 0, an infinite sequence {a(k,n)} of Somos's sequences (n>=0) is:
a(k,0) = a(k,1)= ... = a(k,2*k+1) = 1;
and then for n >= 2*k+2,
a(k,n) = (a(k,n-1)*a(k,n-2*k-1) + a(k,n-k-1)^2)/a(k,n-2*k-2).
In particular, {a(0,n)}=A006125, {a(1,n)}=A006720, {a(2,n)}=A102276, {a(3,n)}=A018896.
One can prove that the sequence {a(k,n)} has the first 4k+2 simple differences: 2k+1 zeros, after that k+1 1's and after that k consecutive squares, beginning with 2^2.
Further we have nontrivial differences. The first of them for k=0,1,2,... are 6, 16, 33, 59, 96, 146, 211, 293, 394, 516, ... that is, {k^3/3 + 5*k^2/2 + 43*k/6 + 6}.
(End)

Crossrefs

Programs

  • Haskell
    a018896 n = a018896_list !! n
    a018896_list = replicate 8 1 ++ f 8 where
       f x = ((a018896 (x - 1) * a018896 (x - 7) + a018896 (x - 4) ^ 2)
             `div` a018896 (x - 8)) : f (x + 1)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Magma
    [n le 8 select 1 else (Self(n-1)*Self(n-7)+Self(n-4)^2 ) / Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 08 2016
  • Maple
    f:= proc(n) option remember;
      if n <= 7 then 1 else
      (procname(n-1)*procname(n-7)+procname(n-4)^2)/procname(n-8)
      fi
    end proc:
    seq(f(n),n=0..50); # Robert Israel, Apr 04 2016
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==a[8]==1, a[n]==(a[n-1]a[n-7]+ a[n-4]^2)/a[n-8]},a[n],{n,50}] (* Harvey P. Dale, May 02 2011 *)
    k = 3; Set[#, 1] & /@ Map[a[k, #] &, Range[0, 2 k + 1]]; a[k_, n_] /; n >= 2 k + 2 := (a[k, n - 1] a[k, n - 2 k - 1] + a[k, n - k - 1]^2)/ a[k, n - 2 k - 2]; Table[a[k, n], {n, 0, 35}] (* Michael De Vlieger, Apr 04 2016 *)

Extensions

More terms from Harvey P. Dale, May 02 2011