A018896 a(n) = ( a(n-1)*a(n-7) + a(n-4)^2 ) / a(n-8); a(0) = ... = a(7) = 1.
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 9, 18, 34, 93, 180, 348, 724, 3033, 9666, 24986, 83761, 261033, 1023728, 3923791, 26128126, 105734485, 381740209, 1895904805, 14058722881, 97964968321, 517832518189, 4364261070929, 25225712161101, 181840424632390
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Mohamed Bensaid, Sato tau functions and construction of Somos sequence, arXiv:2409.05911 [math.NT], 2024. See p. 7.
- David Gale, Mathematical Entertainments, Mathematical Intelligencer, volume 18, number 3, Summer 1996, page 25.
- Eric Weisstein's World of Mathematics, Somos Sequence
- Index entries for two-way infinite sequences
Programs
-
Haskell
a018896 n = a018896_list !! n a018896_list = replicate 8 1 ++ f 8 where f x = ((a018896 (x - 1) * a018896 (x - 7) + a018896 (x - 4) ^ 2) `div` a018896 (x - 8)) : f (x + 1) -- Reinhard Zumkeller, Oct 01 2012
-
Magma
[n le 8 select 1 else (Self(n-1)*Self(n-7)+Self(n-4)^2 ) / Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 08 2016
-
Maple
f:= proc(n) option remember; if n <= 7 then 1 else (procname(n-1)*procname(n-7)+procname(n-4)^2)/procname(n-8) fi end proc: seq(f(n),n=0..50); # Robert Israel, Apr 04 2016
-
Mathematica
RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==a[8]==1, a[n]==(a[n-1]a[n-7]+ a[n-4]^2)/a[n-8]},a[n],{n,50}] (* Harvey P. Dale, May 02 2011 *) k = 3; Set[#, 1] & /@ Map[a[k, #] &, Range[0, 2 k + 1]]; a[k_, n_] /; n >= 2 k + 2 := (a[k, n - 1] a[k, n - 2 k - 1] + a[k, n - k - 1]^2)/ a[k, n - 2 k - 2]; Table[a[k, n], {n, 0, 35}] (* Michael De Vlieger, Apr 04 2016 *)
Extensions
More terms from Harvey P. Dale, May 02 2011
Comments