cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A019326 Cyclotomic polynomials at x=8.

Original entry on oeis.org

8, 7, 9, 73, 65, 4681, 57, 299593, 4097, 262657, 3641, 1227133513, 4033, 78536544841, 233017, 14709241, 16777217, 321685687669321, 261633, 20587884010836553, 16519105, 60247241209, 954437177, 84327972908386521673, 16773121, 1152956690052710401, 61083979321
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A020500 (x = 1), A019320-A019331 (x = 2..13).

Programs

  • Maple
    with(numtheory,cyclotomic); f := n->subs(x=8,cyclotomic(n,x)); seq(f(i),i=0..64);
  • Mathematica
    Join[{8}, Cyclotomic[Range[50], 8]] (* Paolo Xausa, Feb 26 2024 *)
  • PARI
    a(n) = if (n==0, 8, polcyclo(n, 8)); \\ Michel Marcus, Aug 07 2021
  • Python
    from sympy.polys.specialpolys import cyclotomic_poly
    def a(n): return 8 if n == 0 else cyclotomic_poly(n, x=8)
    print([a(n) for n in range(27)]) # Michael S. Branicky, Aug 07 2021
    

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A241039 Cyclotomic(n,2048).

Original entry on oeis.org

1, 2047, 2049, 4196353, 4194305, 17600780175361, 4192257, 73823022692637345793, 17592186044417, 73786976303428141057, 17583600302081, 1298708349570020393652962442872833, 17592181850113
Offset: 0

Views

Author

T. D. Noe, Apr 15 2014

Keywords

Comments

Are all terms composite? At least the first 10000 terms are.

Crossrefs

Cf. A019320-A019331 (cyclotomic polynomials evaluated at 2..13).
Cf. A020500-A020513 (cyclotomic polynomials evaluated at 1, -2..-13, -1).
Cf. A117544 (least k such that cyclotomic(n,k) is prime).
Cf. A117545 (least k such that cyclotomic(k,n) is prime).

Programs

  • Mathematica
    Table[Cyclotomic[k, 2048], {k, 0, 20}]
Showing 1-3 of 3 results.