cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A085033 Number of prime factors of cyclotomic(n,8), which is A019326(n), the value of the n-th cyclotomic polynomial evaluated at x=8.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 2, 3, 4, 2, 3, 4, 2, 3, 3, 2, 4, 2, 3, 4, 5, 1, 2, 3, 3, 4, 5, 2, 5, 3, 4, 2, 4, 1, 4, 4, 3, 3, 5, 2, 3, 3, 2, 8, 7, 4, 4, 3, 2, 3, 5, 3, 4, 3, 2, 3, 2, 2, 5, 7, 4, 5, 6, 2, 6, 5, 4, 6, 3, 1, 7, 3, 4, 5, 4, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057953, number of prime factors of 8^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), this sequence (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 8]]][[2]], {n, 1, 100}]

A138938 Indices k such that A019326(k)=Phi[k](8) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

1, 3, 9, 30, 42, 78, 87, 138, 189, 303, 318, 330, 408, 462, 504, 561, 1002, 1389, 1746, 1794, 2040, 2418, 2790, 3894, 4077, 4722, 6738, 10641, 14610, 14616, 15294, 16662, 18966, 19059, 26142, 27144, 28299, 31638, 33639, 39360
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 8]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,8)) && print1( i",")) /* use ...subst( polcyclo(i),x,8)... in PARI < 2.4.2 */

Extensions

a(17)-a(40) from Robert Price, Apr 20 2012

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A259308 a(n) = 1 + sigma(n)^4.

Original entry on oeis.org

2, 82, 257, 2402, 1297, 20737, 4097, 50626, 28562, 104977, 20737, 614657, 38417, 331777, 331777, 923522, 104977, 2313442, 160001, 3111697, 1048577, 1679617, 331777, 12960001, 923522, 3111697, 2560001, 9834497, 810001, 26873857, 1048577, 15752962, 5308417
Offset: 1

Views

Author

Robert Price, Jun 24 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A259309 (indices of primes in this sequence), A259310 (corresponding primes).

Programs

  • Magma
    [(1 + SumOfDivisors(n)^4): n in [1..50]]; // Vincenzo Librandi, Jun 24 2015
  • Maple
    with(numtheory): A259308:=n->1+sigma(n)^4: seq(A259308(n), n=1..50); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n]^4, {n, 10000}]
    Table[Cyclotomic[8, DivisorSigma[1, n]], {n, 10000}]

Formula

a(n) = 1 + A000203(n)^4.
a(n) = A019326(A000203(n)). - Michel Marcus, Jun 24 2015

A217611 Primes p such that the octal expansion of 1/p has a unique period length.

Original entry on oeis.org

3, 7, 19, 73, 87211, 262657, 18837001, 77158673929, 5302306226370307681801, 19177458387940268116349766612211, 6113142872404227834840443898241613032969, 328017025014102923449988663752960080886511412965881
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 08 2012

Keywords

Comments

Also called generalized unique primes in base 8.

Crossrefs

Cf. A019326, A040017 (unique-period primes in base 10).

Programs

  • Mathematica
    lst = {}; Do[c = Cyclotomic[n, 8]; q = c/GCD[n, c]; If[PrimePowerQ[q], p = FactorInteger[q][[1, 1]]; AppendTo[lst, p]], {n, 138}]; Sort[lst]
Showing 1-5 of 5 results.