cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A211243 Order of 7 mod n-th prime: least k such that prime(n) divides 7^k-1.

Original entry on oeis.org

1, 1, 4, 0, 10, 12, 16, 3, 22, 7, 15, 9, 40, 6, 23, 26, 29, 60, 66, 70, 24, 78, 41, 88, 96, 100, 51, 106, 27, 14, 126, 65, 68, 69, 74, 150, 52, 162, 83, 172, 178, 12, 10, 24, 98, 99, 210, 37, 113, 228, 116, 238, 240, 125, 256, 262, 268, 135, 138, 20, 141, 292
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Cf. A019337 (full reptend primes in base 7).
Row lengths of A201911. - Michel Marcus, Feb 04 2019

Programs

  • GAP
    A000040:=Filtered([1..350],IsPrime);;
    List([1..Length(A000040)],n->OrderMod(7,A000040[n])); # Muniru A Asiru, Feb 06 2019
    
  • Mathematica
    nn = 7; Table[If[Mod[nn, p] == 0, 0, MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]
  • PARI
    a(n,{base=7}) = my(p=prime(n)); if(base%p, znorder(Mod(base,p)), 0) \\ Jianing Song, May 13 2024

A167795 Numbers with primitive root 7.

Original entry on oeis.org

2, 4, 5, 10, 11, 13, 17, 22, 23, 26, 34, 41, 46, 61, 67, 71, 79, 82, 89, 97, 101, 107, 121, 122, 127, 134, 142, 151, 158, 163, 169, 173, 178, 179, 194, 202, 211, 214, 229, 239, 241, 242, 254, 257, 263, 269, 289, 293, 302, 326, 338, 346, 347, 349, 358, 359, 379
Offset: 1

Views

Author

T. D. Noe, Nov 12 2009

Keywords

Crossrefs

Cf. A019337 (primes with primitive root 7)

Programs

  • Mathematica
    pr=7; Select[Range[2,2000], MultiplicativeOrder[pr,# ] == EulerPhi[ # ] &]
  • PARI
    is(n)=if(n%7==0, return(0)); my(p=eulerphi(n)); znorder(Mod(7, n), p)==p \\ Charles R Greathouse IV, Jan 04 2025

A273948 Odd prime factors of generalized Fermat numbers of the form 7^(2^m) + 1 with m >= 0.

Original entry on oeis.org

5, 17, 257, 353, 769, 1201, 12289, 13313, 35969, 65537, 114689, 163841, 169553, 7699649, 9379841, 11886593, 28667393, 64749569, 70254593, 134818753, 197231873, 4643094529, 19847446529, 47072139617, 206158430209, 452850614273, 531968664833, 943558259713
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Odd primes p other than 3 such that the multiplicative order of 7 (mod p) is a power of 2.
From Robert Israel, Jun 16 2016: (Start)
If p is in the sequence, then for each m either p | 7^(2^k)+1 for some k < m or 2^m | p-1. Thus all members except 5, 17, 353, 1201, 169553, 7699649, 134818753, 47072139617 are congruent to 1 mod 2^7.
The intersection of this sequence and A019337 is A019434 minus {3}. (End)

References

  • Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.

Crossrefs

Cf. A023394, A072982, A078304, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273949 (base 11), A273950 (base 12).

Programs

  • Maple
    filter:= proc(t)
      if not isprime(t) then return false fi;
      7 &^ (2^padic:-ordp(t-1,2)) mod t = 1
    end proc:
    select(filter, [seq(i,i=5..10^6,2)]); # Robert Israel, Jun 16 2016
  • Mathematica
    Select[Prime@Range[3, 10^5], IntegerQ@Log[2, MultiplicativeOrder[7, #]] &]

A241045 Primes having primitive roots 2, 3, 5, and 7.

Original entry on oeis.org

173, 293, 677, 773, 797, 907, 1277, 1637, 1747, 2083, 2357, 2477, 2693, 2957, 3533, 3797, 4133, 4157, 4373, 4493, 4603, 4637, 4877, 4973, 5333, 5477, 5717, 5813, 5923, 6053, 6173, 6317, 6547, 6653, 6763, 7013, 7517, 8237, 8573, 8693, 8837, 9173, 9533
Offset: 1

Views

Author

T. D. Noe, Apr 16 2014

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[p_, n_] := MultiplicativeOrder[p, n] == n - 1; Select[Prime[Range[1200]], fQ[2, #] && fQ[3, #] && fQ[5, #] && fQ[7, #] &]
    Select[Prime[Range[1200]],SubsetQ[PrimitiveRootList[#],{2,3,5,7}]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 16 2020 *)

A241047 Primes having primitive roots 2, 3, 5, 7, 11, and 13.

Original entry on oeis.org

293, 2477, 4373, 6173, 7013, 9173, 9677, 10853, 13037, 13397, 13613, 13877, 14957, 15413, 17093, 17597, 18413, 18917, 19157, 22277, 22613, 24317, 26813, 27653, 27893, 29333, 30197, 31517, 33893, 34613, 34877, 35573, 37253, 40493, 41117, 41333, 42437
Offset: 1

Views

Author

T. D. Noe, Apr 16 2014

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[p_, n_] := MultiplicativeOrder[p, n] == n - 1; Select[Prime[Range[4500]], fQ[2, #] && fQ[3, #] && fQ[5, #] && fQ[7, #] && fQ[11, #] && fQ[13, #] &]

A241048 Primes having primitive roots 2, 3, 5, 7, 11, 13, and 17.

Original entry on oeis.org

2477, 9173, 10853, 13877, 14957, 15413, 22277, 22613, 24317, 27653, 30197, 34877, 37253, 41117, 41333, 42437, 42677, 43973, 48677, 51413, 55733, 61613, 62597, 63773, 66293, 72533, 73757, 74093, 76733, 79397, 79757, 82997, 86357, 90173, 92237, 92333, 95597
Offset: 1

Views

Author

T. D. Noe, Apr 16 2014

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[p_, n_] := MultiplicativeOrder[p, n] == n - 1; Select[Prime[Range[10000]], fQ[2, #] && fQ[3, #] && fQ[5, #] && fQ[7, #] && fQ[11, #] && fQ[13, #] && fQ[17, #] &]

A071565 Numbers k such that x^k + x^(k-1) + x^(k-2) + ... + x + 1 is irreducible over GF(7).

Original entry on oeis.org

4, 10, 12, 16, 22, 40, 60, 66, 70, 78, 88, 96, 100, 106, 126, 150, 162, 172, 178, 210, 228, 238, 240, 256, 262, 268, 292, 346, 348, 358, 378, 396, 430, 432, 442, 460, 490, 498, 508, 520, 546, 576, 592, 598, 600, 630, 658, 676, 682, 732, 738, 742, 760, 772
Offset: 1

Views

Author

Robert G. Wilson v, Jun 22 2002

Keywords

Crossrefs

Cf. A071642.
Cf. A019337. - Joerg Arndt, Apr 17 2020

Formula

a(n) = A019337(n+1) - 1. - Joerg Arndt, Apr 17 2020
Showing 1-7 of 7 results.