A019536 Number of length n necklaces with integer entries that cover an initial interval of positive integers.
1, 2, 5, 20, 109, 784, 6757, 68240, 787477, 10224812, 147512053, 2340964372, 40527565261, 760095929840, 15352212731933, 332228417657960, 7668868648772701, 188085259070219000, 4884294069438337429
Offset: 1
Examples
a(3) = 5 since there are the following length 3 words up to rotation: 111, 112, 122, 123, 132. a(4) = 20 since there are the following length 4 words up to rotation: 1111, 1112, 1122, 1212, 1222, 1123, 1132, 1213, 1223, 1232, 1233, 1322, 1323, 1332, 1234, 1243, 1324, 1342, 1423, 1432.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..420
- M. Goebel, On the number of special permutation-invariant orbits and terms, in: Applicable Algebra in Engin., Comm. and Comp. (AAECC 8), Volume 8, Number 6, 1997, pp. 505-509 (Lect. Notes Comp. Sci.); see p. 509 (stated as an open problem).
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Eric Weisstein's world of Mathematics, Necklaces.
Programs
-
Mathematica
Needs["DiscreteMath`Combinatorica`"]; mult[li:{__Integer}] := Multinomial @@ Length /@ Split[Sort[li]]; neck[li:{__Integer}] := Module[{n, d}, n=Plus @@ li; d=n-First[li];Fold[ #1+(EulerPhi[ #2]*(n/#2)!)/Times @@ ((li/#2)!)&, 0, Divisors[GCD @@ li]]/n]; Table[(mult /@ Partitions[n]).(neck /@ Partitions[n]), {n, 24}] (* second program: *) a[n_] := Sum[DivisorSum[n, EulerPhi[#]*StirlingS2[n/#, k] k! &]/n, {k, 1, n}]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Mar 31 2016, after Philippe Deléham *)
-
PARI
a(n) = sum(k=1, n, sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2)*k!)/n); \\ Michel Marcus, Mar 31 2016
Formula
See Mathematica code.
a(n) ~ (n-1)! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Jul 21 2019
From Petros Hadjicostas, Aug 19 2019: (Start)
The first formula is due to Philippe Deléham from the Crossrefs (see also the programs below). The second one follows easily from the first one. The third one follows from the second one using the associative property of Dirichlet convolutions.
a(n) = Sum_{k = 1..n} (k!/n) * Sum_{d|n} phi(d) * S2(n/d, k), where S2(n, k) = Stirling numbers of 2nd kind (A008277).
a(n) = (1/n) * Sum_{d|n} phi(d) * A000670(n/d).
a(n) = Sum_{d|n} A060223(d).
(End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = (1/n)*Sum_{k=1..n} A000670(gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} A000670(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
Extensions
Edited by Wouter Meeussen, Aug 06 2002
Corrected by T. D. Noe, Oct 31 2006
Edited by Andrew Howroyd, Aug 19 2019
Comments