cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A100178 Structured hexagonal diamond numbers (vertex structure 5).

Original entry on oeis.org

1, 8, 29, 72, 145, 256, 413, 624, 897, 1240, 1661, 2168, 2769, 3472, 4285, 5216, 6273, 7464, 8797, 10280, 11921, 13728, 15709, 17872, 20225, 22776, 25533, 28504, 31697, 35120, 38781, 42688, 46849, 51272, 55965, 60936, 66193, 71744, 77597, 83760, 90241, 97048, 104189
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Row 1 of the convolution array A213838. - Clark Kimberling, Jul 05 2012

Crossrefs

Cf. A000578 (alternate vertex), A000447 (structured diamonds) A100145 (for more on structured numbers).

Programs

  • Magma
    [(1/6)*(8*n^3-6*n^2+4*n): n in [1..40]]; // Vincenzo Librandi, Aug 03 2011
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {1, 8, 29, 72}, 50] (* Paolo Xausa, Aug 06 2025 *)

Formula

a(n) = (1/6)*(8*n^3 - 6*n^2 + 4*n).
G.f.: x*(1+4*x+3*x^2)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 04 2012
From Elmo R. Oliveira, Aug 28 2025: (Start)
E.g.f.: exp(x)*x*(4*x^2 + 9*x + 3)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
a(n) = A167471(n)/16 = A019558(n)/48. (End)

A008340 Coordination sequence for E_8 lattice.

Original entry on oeis.org

1, 240, 9120, 121680, 864960, 4113840, 14905440, 44480400, 114879360, 265422960, 561403680, 1105317840, 2050966080, 3620750640, 6126497760, 9994133520, 15792541440, 24266930160, 36377039520, 53340513360, 76681767360
Offset: 0

Views

Author

Keywords

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Crossrefs

Programs

  • Maple
    if n = 0 then 1 else 456/7*n^7-120*n^6+312*n^5-120*n^4-48*n^3+240*n^2-624/7*n;
  • Mathematica
    Join[{1},Table[456/7*n^7-120*n^6+312*n^5-120*n^4-48*n^3+ 240*n^2- 624/7*n,{n,20}]] (* Harvey P. Dale, Jul 14 2014 *)

Formula

a(n) = if n = 0 then 1 else (456/7)*n^7-120*n^6+312*n^5-120*n^4-48*n^3+240*n^2-(624/7)*n.
Bacher et al. give a g.f.
G.f.: (x^8 +232*x^7 +24508*x^6 +107224*x^5 +133510*x^4 +55384*x^3 +7228*x^2 +232*x +1)/(x -1)^8 = 1 + 240*x* (1+30*x+231*x^2+556*x^3+447*x^4+102*x^5+x^6) /(1-x)^8. [Colin Barker, Sep 26 2012]

Extensions

The values given by O'Keeffe are incorrect.

A008399 Coordination sequence for E_6 lattice.

Original entry on oeis.org

1, 72, 1062, 6696, 26316, 77688, 189810, 405720, 785304, 1408104, 2376126, 3816648, 5885028, 8767512, 12684042, 17891064, 24684336, 33401736, 44426070, 58187880, 75168252, 95901624, 120978594, 151048728, 186823368, 229078440, 278657262, 336473352, 403513236
Offset: 0

Views

Author

Keywords

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Crossrefs

Programs

  • Magma
    [1] cat [9*n*(13*n^2+7)*(n^2+1)/5: n in [1..40]]; // G. C. Greubel, May 29 2023
    
  • Maple
    1, seq(117/5*n^5+36*n^3+63/5*n, n=1..30);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,72,1062,6696,26316,77688, 189810},30] (* Harvey P. Dale, Oct 24 2022 *)
  • SageMath
    [9*n*(13*n^2+7)*(n^2+1)//5 +int(n==0) for n in range(41)] # G. C. Greubel, May 29 2023

Formula

a(n) = 9*n*(13*n^2+7)*(n^2+1)/5 for n >= 1.
Bacher et al. give a g.f.
G.f.: (1+66*x+645*x^2+1384*x^3+645*x^4+66*x^5+x^6)/(1-x)^6 = 1 + 18*x*(4+35*x+78*x^2+35*x^3+4*x^4)/(1-x)^6. - Colin Barker, Sep 26 2012
E.g.f.: 1 + (1/5)*x*(360 + 2295*x + 3105*x^2 + 1170*x^3 + 117*x^4 )*exp(x). - G. C. Greubel, May 29 2023

A167471 Janet periodic table of the elements and structured hexagonal diamond numbers. a(n) = A166911(2*n) + A166911(2*n+1).

Original entry on oeis.org

16, 128, 464, 1152, 2320, 4096, 6608, 9984, 14352, 19840, 26576, 34688, 44304, 55552, 68560, 83456, 100368, 119424, 140752, 164480, 190736, 219648, 251344, 285952, 323600, 364416, 408528, 456064, 507152, 561920, 620496, 683008, 749584, 820352, 895440, 974976
Offset: 1

Views

Author

Paul Curtz, Nov 04 2009

Keywords

Crossrefs

Programs

  • Magma
    [16*n*(2-3*n+4*n^2)/3: n in [1..40]]; // Vincenzo Librandi, Aug 03 2011
  • Mathematica
    Table[16*n*(2 - 3*n + 4*n^2)/3, {n,1,50}] (* G. C. Greubel, Jun 13 2016 *)

Formula

a(n) = 16*n*(2 - 3*n + 4*n^2)/3 = 16*A100178(n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), a(1)=16, a(2)=128, a(3)=464, a(4)=1152.
From Elmo R. Oliveira, Aug 28 2025: (Start)
G.f.: 16*x*(1 + 4*x + 3*x^2)/(1 - x)^4.
E.g.f.: 16*x*(3 + 9*x + 4*x^2)*exp(x)/3.
a(n) = A019558(n)/3. (End)
Showing 1-4 of 4 results.