cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019582 a(n) = n*(n - 1)^3/2.

Original entry on oeis.org

0, 0, 1, 12, 54, 160, 375, 756, 1372, 2304, 3645, 5500, 7986, 11232, 15379, 20580, 27000, 34816, 44217, 55404, 68590, 84000, 101871, 122452, 146004, 172800, 203125, 237276, 275562, 318304, 365835, 418500, 476656, 540672, 610929, 687820, 771750, 863136
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

a(n) = n(n-1)^3/2 is half the number of colorings of 4 points on a line with n colors. - R. H. Hardin, Feb 23 2002
n^2*n(n+1)/2: a(n+1) = product of n-th triangular number and n-th square number. E.g., a(4)=6*9=54. - Alexandre Wajnberg, Dec 18 2005
Also, the number of ways to place two dominoes horizontally in different rows on an n X n chessboard. - Ralf Stephan, Jun 09 2014
a(n) is the second Zagreb index of the complete graph K[n]. The second Zagreb index of a simple connected graph g is the sum of the degree products d(i)d(j) over all edges ij of g. - Emeric Deutsch, Nov 07 2016
a(n+1) is the number of inequivalent 2 X 2 matrices with entries in {1,2,3,...,n} when a matrix and its transpose are considered equivalent. - David Nacin, Feb 27 2017

Examples

			G.f. = x^2 + 12*x^3 + 54*x^4 + 160*x^5 + 375*x^6 + 756*x^7 + 1372*x^8 + ...
		

Crossrefs

A row or column of A132191.

Programs

Formula

a(n+1) = Sum_{k=0..n} n^2(n-k) = n^3*(n+1)/2. - Paul Barry, Sep 02 2003
a(n+1) = A000290(n) * A000217(n). - Zerinvary Lajos, Jan 20 2007
Sum_{j>=2} 1/a(j) = hypergeom([1, 1, 1, 1], [2, 2, 3], 1) = 2 - 2*zeta(2) + 2*zeta(3). - Stephen Crowley, Jun 28 2009
G.f.: -x^2*(4*x^2 + 7*x + 1)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(1 - n) = A092364(n). - Michael Somos, Jun 09 2014
Sum_{n>=2} (-1)^n/a(n) = 3*zeta(3)/2 - zeta(2) + 4*log(2) - 2. - Amiram Eldar, Sep 11 2022
E.g.f.: exp(x)*x^2*(1 + 3*x + x^2)/2. - Stefano Spezia, Jun 10 2023