A019582 a(n) = n*(n - 1)^3/2.
0, 0, 1, 12, 54, 160, 375, 756, 1372, 2304, 3645, 5500, 7986, 11232, 15379, 20580, 27000, 34816, 44217, 55404, 68590, 84000, 101871, 122452, 146004, 172800, 203125, 237276, 275562, 318304, 365835, 418500, 476656, 540672, 610929, 687820, 771750, 863136
Offset: 0
Examples
G.f. = x^2 + 12*x^3 + 54*x^4 + 160*x^5 + 375*x^6 + 756*x^7 + 1372*x^8 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..680
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n*(n-1)^3/2: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
-
Maple
f := n->n*(n-1)^3/2; seq(f(n), n=0..50);
-
Mathematica
f[n_]:=n*(n-1)^3/2; Table[f[n], {n,0,4!}] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2010 *)
-
PARI
a(n)=n*(n-1)^3/2 \\ Charles R Greathouse IV, Feb 27 2017
Formula
a(n+1) = Sum_{k=0..n} n^2(n-k) = n^3*(n+1)/2. - Paul Barry, Sep 02 2003
Sum_{j>=2} 1/a(j) = hypergeom([1, 1, 1, 1], [2, 2, 3], 1) = 2 - 2*zeta(2) + 2*zeta(3). - Stephen Crowley, Jun 28 2009
G.f.: -x^2*(4*x^2 + 7*x + 1)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(1 - n) = A092364(n). - Michael Somos, Jun 09 2014
Sum_{n>=2} (-1)^n/a(n) = 3*zeta(3)/2 - zeta(2) + 4*log(2) - 2. - Amiram Eldar, Sep 11 2022
E.g.f.: exp(x)*x^2*(1 + 3*x + x^2)/2. - Stefano Spezia, Jun 10 2023
Comments