A019673 Decimal expansion of Pi/6.
5, 2, 3, 5, 9, 8, 7, 7, 5, 5, 9, 8, 2, 9, 8, 8, 7, 3, 0, 7, 7, 1, 0, 7, 2, 3, 0, 5, 4, 6, 5, 8, 3, 8, 1, 4, 0, 3, 2, 8, 6, 1, 5, 6, 6, 5, 6, 2, 5, 1, 7, 6, 3, 6, 8, 2, 9, 1, 5, 7, 4, 3, 2, 0, 5, 1, 3, 0, 2, 7, 3, 4, 3, 8, 1, 0, 3, 4, 8, 3, 3, 1, 0, 4, 6, 7, 2, 4, 7, 0, 8, 9, 0, 3, 5, 2, 8, 4, 4
Offset: 0
Examples
Pi/6 = 0.5235987755982988730771072305465838140328615665625176368291574...
References
- Ian Stewart, Professor Stewart's Cabinet of Mathematical Curiosities, Basic Books, a member of the Perseus Books Group, NY, 2009, "A Constant Bore", pp. 49-50 & 264-266.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Wikipedia, Atomic packing factor
- Index entries for transcendental numbers
Crossrefs
Programs
-
Magma
C := ComplexField(); [Pi(C)/6]; // G. C. Greubel, Nov 18 2017
-
Mathematica
RealDigits[N[Pi/6,6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *) RealDigits[Pi/6,10,120][[1]] (* Harvey P. Dale, Oct 05 2024 *)
-
PARI
Pi/6 \\ Charles R Greathouse IV, Jul 07 2014
Formula
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 9) dx.
Equals Integral_{x=0..oo} 1/(9*x^2 + 1) dx. (End)
Pi/6 = Sum_{n >= 1} i/(n*P(n,sqrt(-3))*P(n-1,sqrt(-3))), where i = sqrt(-1) and P(n,x) denotes the n-th Legendre polynomial. The first ten terms of the series gives the approximation Pi/6 = 0.52359877559(52...) correct to 11 decimal places - Peter Bala, Mar 16 2024
Comments