A019727 Decimal expansion of sqrt(2*Pi).
2, 5, 0, 6, 6, 2, 8, 2, 7, 4, 6, 3, 1, 0, 0, 0, 5, 0, 2, 4, 1, 5, 7, 6, 5, 2, 8, 4, 8, 1, 1, 0, 4, 5, 2, 5, 3, 0, 0, 6, 9, 8, 6, 7, 4, 0, 6, 0, 9, 9, 3, 8, 3, 1, 6, 6, 2, 9, 9, 2, 3, 5, 7, 6, 3, 4, 2, 2, 9, 3, 6, 5, 4, 6, 0, 7, 8, 4, 1, 9, 7, 4, 9, 4, 6, 5, 9, 5, 8, 3, 8, 3, 7, 8, 0, 5, 7, 2, 6
Offset: 1
Examples
2.506628274631000502415765284811045253006986740609938316629923576342293....
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
- Clifford A. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 307.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 45.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Mohammad K. Azarian, An Expression for Pi, Problem #870, College Mathematics Journal, Vol. 39, No. 1, January 2008, p. 66. Solution appeared in Vol. 40, No. 1, January 2009, pp. 62-64.
- Abraham de Moivre, Miscellanea Analytica de Seriebus et Quadraturis, London, England: J. Tonson & J. Watts, 1730, pp. 96-106.
- K. Kimoto, N. Kurokawa, C. Sonoki, and M. Wakayama, Some examples of generalized zeta regularized products, Kodai Math. J. 27 (2004), 321-335.
- Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review.
- A. Rényi and G. Szekeres, On the height of trees, Journal of the Australian Mathematical Society , Volume 7 , Issue 4 , November 1967 , pp. 497-507.
- James Stirling, Methodus differentialis, sive tractatus de summatione et interpolatione serierum infinitarum, London, 1730. See Propositio XXVIII, pp. 135-139.
- Eric Weisstein's World of Mathematics, Normal Distribution.
- Wikipedia, Stirling's approximation.
- Index entries for transcendental numbers.
Programs
-
Magma
R:= RealField(100); Sqrt(2*Pi(R)); // G. C. Greubel, Mar 08 2018
-
Mathematica
RealDigits[Sqrt[2Pi],10,120][[1]] (* Harvey P. Dale, Dec 12 2012 *)
-
Maxima
fpprec: 100$ ev(bfloat(sqrt(2*%pi))); /* Martin Ettl, Oct 11 2012 */
-
PARI
default(realprecision, 20080); x=sqrt(2*Pi); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019727.txt", n, " ", d)); \\ Harry J. Smith, May 31 2009
Formula
Equals lim_{n->oo} e^n*(n!)/n^n*sqrt(n).
Also equals Integral_{x >= 0} W(1/x^2) where W is the Lambert function, which is also known as ProductLog. - Jean-François Alcover, May 27 2013
Also equals the generalized Glaisher-Kinkelin constant A_0, see the Finch reference. - Jean-François Alcover, Dec 23 2014
Equals exp(-zeta'(0)). See Kimoto et al. - Michel Marcus, Jun 27 2019
Comments