cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020500 Cyclotomic polynomials at x=1.

Original entry on oeis.org

0, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 2, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3
Offset: 1

Views

Author

Keywords

Comments

Also the greatest common divisor of the prime factors of n. - Peter Luschny, Mar 22 2011

Crossrefs

Apart from initial zero, same as A014963.
Cf. A007947.

Programs

  • Maple
    with(numtheory,cyclotomic); f := n->subs(x=1,cyclotomic(n,x)); seq(f(i),i=0..64);
    A020500 := n -> igcd(op(numtheory[factorset](n))):
    seq(A020500(i), i=1..73); # Peter Luschny, Mar 22 2011
  • Mathematica
    Table[ Cyclotomic[n, 1], {n, 1, 73}] (* Jean-François Alcover, Jan 10 2013 *)
    Join[{0},Table[GCD@@FactorInteger[n][[All,1]],{n,2,80}]] (* Harvey P. Dale, Jul 18 2019 *)
  • PARI
    a(n) = polcyclo(n, 1); \\ Michel Marcus, Oct 23 2015
    
  • PARI
    a(n) = if (n==1, 0, if (isprimepower(n,&p), p, 1)); \\ Michel Marcus, Nov 23 2016

Formula

a(1) = 0; for n > 1, a(n) = gcd(lpf(n),gpf(n)), by Gallot's theorem 1.4. - Thomas Ordowski, May 04 2013
For n > 2, a(n) = lcm(1,2,...,n)/lcm(1,...,n-1). - Thomas Ordowski, Nov 01 2013