A020695 Pisot sequence E(2,3).
2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (See Corollary 1 (x)).
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
GAP
A020695:=List([0..10^3], n->Fibonacci(n+3)); # Muniru A Asiru, Sep 05 2017
-
Magma
[Fibonacci(n+3): n in [0..50]]; // Vincenzo Librandi, Apr 23 2011
-
Mathematica
CoefficientList[Series[(-x - 2)/(x^2 + x - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *) LinearRecurrence[{1,1},{2,3},40] (* or *) Fibonacci[Range[3,50]] (* Harvey P. Dale, Nov 22 2012 *)
-
PARI
a(n)=fibonacci(n+3) \\ Charles R Greathouse IV, Jan 17 2012
-
PARI
Vec((2+x)/(1-x-x^2) + O(x^40)) \\ Colin Barker, Jun 05 2016
Formula
a(n) = Fibonacci(n+3); a(n) = a(n-1) + a(n-2).
G.f.: (2+x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = (2^(-n)*((1-sqrt(5))^n*(-2+sqrt(5))+(1+sqrt(5))^n*(2+sqrt(5))))/sqrt(5). - Colin Barker, Jun 05 2016
E.g.f.: 2*(2*sqrt(5)*sinh(sqrt(5)*x/2) + 5*cosh(sqrt(5)*x/2))*exp(x/2)/5. - Ilya Gutkovskiy, Jun 05 2016
Comments