cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A020721 Pisot sequences E(7,10), P(7,10).

Original entry on oeis.org

7, 10, 14, 20, 29, 42, 61, 89, 130, 190, 278, 407, 596, 873, 1279, 1874, 2746, 4024, 5897, 8642, 12665, 18561, 27202, 39866, 58426, 85627, 125492, 183917, 269543, 395034, 578950, 848492, 1243525, 1822474, 2670965, 3914489, 5736962, 8407926, 12322414, 18059375
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A020711.
See A008776 for definitions of Pisot sequences.
Cf. A048626.

Programs

  • Magma
    Exy:=[7,10]; [n le 2 select Exy[n] else Floor(Self(n-1)^2/Self(n-2) + 1/2): n in [1..50]]; // Bruno Berselli, Feb 05 2016
    
  • Mathematica
    RecurrenceTable[{a[0]==7, a[1]==10, a[n]== Floor[a[n-1]^2/a[n-2] +1/2]}, a, {n, 0, 50}] (* Bruno Berselli, Feb 05 2016 *)
  • PARI
    Vec((7-4*x+x^2-5*x^3)/((1-x)*(1-x-x^3)) + O(x^40)) \\ Jinyuan Wang, Mar 10 2020

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (7-4*x+x^2-5*x^3) / ((1-x)*(1-x-x^3)). - Colin Barker, Jun 05 2016
Theorem: E(7,10) satisfies a(n) = 2 a(n - 1) - a(n - 2) + a(n - 3) - a(n - 4) for n>=4. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger. This shows that the above conjectures are correct. - N. J. A. Sloane, Sep 10 2016
a(n) = A020711(n+1). - Jinyuan Wang, Mar 10 2020
Empirical formula: a(n) = a(n-1) + a(n-3) - 1. - Greg Dresden, May 18 2020

A128424 a(n) = floor(sqrt(a(n-1)^2 + a(n-2)^2 + a(n-1)*a(n-2))), a(1)=1, a(2)=3.

Original entry on oeis.org

1, 3, 3, 5, 7, 10, 14, 20, 29, 42, 61, 89, 130, 190, 278, 407, 596, 873, 1279, 1874, 2746, 4024, 5897, 8642, 12665, 18561, 27202, 39866, 58426, 85627, 125492, 183917, 269543, 395034, 578950, 848492, 1243525, 1822474, 2670965, 3914489, 5736962
Offset: 1

Views

Author

Zak Seidov, May 04 2007

Keywords

Comments

For a triangle with sides a(n-1) and a(n-2) and a 120-degree angle between them, a(n) is the floor of the value of the third side.
a(n) = A020711(n-4) for 4 <= n <= 41. - Georg Fischer, Nov 02 2018

Crossrefs

Programs

  • Mathematica
    a[1]=1;a[2]=3;a[n_]:=a[n]=Floor[Sqrt[a[n-1]^2+a[n-2]^2+a[n-1]*a[n-2]]] Table[a[n],{n,45}]
    RecurrenceTable[{a[1]==1,a[2]==3,a[n]==Floor[Sqrt[a[n-1]^2+a[n-2]^2+ a[n-1]*a[n-2]]]},a,{n,50}] (* Harvey P. Dale, Oct 01 2018 *)

Formula

Conjectures from Colin Barker, Nov 03 2018: (Start)
G.f.: x*(1 + x - 2*x^2 + x^3 - 2*x^4 + x^5 - x^6) / ((1 - x)*(1 - x - x^3)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) for n>7.
(End)
Showing 1-2 of 2 results.