A020761 Decimal expansion of 1/2.
5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
1/2 = 0.50000000000000...
Links
- Michael Penn, A creative approach to a scary looking integral., YouTube video, 2020.
- Michael Penn, I really like this sum!, YouTube video, 2021.
- Wikipedia, Riemann zeta function
- Wikipedia, Platonic solid
- Index entries for linear recurrences with constant coefficients, signature (1).
Crossrefs
Programs
-
Maple
Digits:=100; evalf(1/2); # Wesley Ivan Hurt, Mar 27 2014
-
Mathematica
RealDigits[1/2, 10, 128][[1]] (* Alonso del Arte, Dec 13 2013 *) LinearRecurrence[{1},{5,0},99] (* Ray Chandler, Jul 15 2015 *)
-
PARI
{ default(realprecision); x=1/2*10; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Felix Fröhlich, Jul 24 2014
-
PARI
a(n) = 5*(n==0); \\ Michel Marcus, Jul 25 2014
Formula
Equals Sum_{k>=1} (1/3^k). Hence 1/2 = 0.1111111111111... in base 3.
Cosine of 60 degrees, i.e., cos(Pi/3).
-zeta(0), zeta being the Riemann function. - Stanislav Sykora, Mar 27 2014
a(0) = 5; a(n) = 0, n > 0. - Wesley Ivan Hurt, Mar 27 2014
a(n) = 5 * floor(1/(n + 1)). - Wesley Ivan Hurt, Mar 27 2014
Comments